Cosmic insights - 10 ways aerospace can shape the future of construction
[edit] Introduction
While most other industries have undergone tremendous changes over the past few decades, and have reaped the benefits of process, product and service innovations, the construction sector has been hesitant to fully embrace the latest innovation opportunities, and its labour productivity has stagnated or even decreased over the last 50 years.
This mediocre track record can be attributed to various internal and external challenges: the persistent fragmentation of the industry, inadequate collaboration between the players, the sector’s difficulty in adopting and adapting to new technologies, the difficulties in recruiting a talented and future-ready workforce, and insufficient knowledge transfer from project to project, to name just a few.
In contrast to the construction industry, the aviation and aerospace industries are and always had been inherently an innovative sector. Traditionally, aerospace was all about doing the impossible and redefining the ultimate frontier: its business models, products and services developed constantly required continuous innovation and improvement.
Key to the industry’s success was that incremental change was rarely an option – instead, far-reaching challenges or radical goals demanded leap-frogging or disruptive out-of-the-box solutions and execution.
The fundamental difference in attitude was illustrated by John F. Kennedy when he explained in a 1962 speech: “We choose to go to the moon in this decade and do the other things, not because they are easy, but because they are hard.”
Here are 10 lessons from the aviation and aerospace industries, which could help usher in a new era of construction:
[edit] 1. Go beyond “on time and on budget”
Excellence in programme delivery:
The construction industry can learn from aerospace, by changing the business model and by adopting disruptive technology. By introducing novel reusable rockets, Space X is able to dramatically reduce the cost and lead time of access to space.
Conventional domestic rockets reaching a low earth orbit (LEO) can cost between $10,000/kg of payload to orbit to up to $35,000/kg and more. In contrast, the SpaceX programme is able to deliver as low as $4,700/kg for the existing Falcon 9 and $1,700/kg for the future Falcon Heavy, currently the most powerful operational rocket in the world by a factor of two, which will lift off later in 2016.
This is a cost reduction of up to 95% compared to conventional programmes. Enabled by their refurbishment operations, within the next three years, SpaceX is planning a single launch every four days, a launching schedule unheard of in the industry, where launching frequencies within months, for instance of the Space Shuttle programme, were already a major challenge. SpaceX’s long-term goal, however, is that their orbital launch vehicle will be designed to allow reuse a few hours after return.
[edit] 2. Learn from fundamental constraints
Optimising lifecycle performance and closing the circle:
On Earth, we still have a relative abundance of energy, minerals and natural resources to support human life. Scientists and engineers have spent decades perfecting technology that helps astronauts recover and recycle those basic necessities in the harsh environment of space.
By designing closed-end circulatory systems including the food production-supply-waste cycle and dramatically increasing lifecycle performance and utilisation of aerospace assets, deep space missions or trips to future planetary outposts, re-supply missions will become possible in the near future.
Already put in practice, the Environmental Control and Life Support System (ECLSS) installed on the International Space Station, for instance, includes two key components, the Water Recovery System – by reclaiming wastewater, including water from crew members’ sweat and urine, cabin humidity condensation – as well as the Oxygen Generation System that reduce the need for constant resupply of the basic needs from Earth.
A low-maintenance ECLSS regenerative life support hardware, generating and recycling the life sustaining elements required by human travellers, will be essential for long-duration trips into space. The construction industry is only beginning to conceptually think in closed systems and lifecycle performance.
[edit] 3. Enable the continued support of human life on Earth and elsewhere
Environmental sustainability as the only alternative:
Despite the fact that extraterrestrial activities won’t be able to harm our planet’s atmosphere, there is still plenty of potential to minimise the environmental footprint of the aerospace industry – even more so the construction industry.
Visionaries such as Jeff Bezos, Elon Musk and Richard Branson are also committed to achieve carbon neutrality and to eliminate waste.
Branson commented in an interview this year:
“We are doing everything we can to try to work towards turning the world into a place that’s run by clean energy, not dirty energy. We’ve already managed to reduce the amount of energy, of carbon output, to get somebody into space … to less than a round-trip, economy class, from London to New York,” he said.
“I suspect, in two to three years, we’ll not be using any carbon output at all for our space programme. All I can say is that we would not want a space programme if we thought it was in any way damaging. We believe space can play a major part in helping the world we live in and getting on top of climate change,” Branson ensured. “I promise you that we will not allow people to feel guilty travelling with us. We will show them we can pioneer clean energy.”
[edit] 4. Prioritise smart and affordable solutions
Affordability has to be part of our DNA:
The history of governmental aerospace programmes, in particular during the Cold War, was characterised by massive investment including uncontrolled overspending and significant inefficiencies, similar to the construction sector today.
However, today’s sovereign funding gaps require increasingly affordable and creative solutions. Robert Bigelow, founder and President of Bigelow Aerospace, believes that cost effective habitats and transportation systems are vital to America’s space explorations ambitions throughout the solar system. His company is focused on creating affordable, practical and smart space habitats. Using his technology, NASA will build an addition to the International Space Station.
The newly created module is like no other on the station, and will be very easy to construct: “Just connect to a docking port, fill with compressed air, and voila! Instant space habitat.”
With respect to transportation, according to NASA astronaut Don Thomas, “with Virgin Galactic, the price comes down to a quarter of a million dollars. I would think that, in a decade or so, you will see flights to space for $10,000 to $15,000. Space travel will be more in line with an exotic trip to Antarctica.”
[edit] 5. Learn from experience
The importance of disaster resiliency, health and safety:
The more time astronauts spend in space the more we start to fully understand the perils of these ventures, including reported disturbing health and safety problems.
As tragic events have shown, the utmost hazardous part of space travel is take-off and landing. But even once space is reached, astronauts are still exposed to an incredibly long list of risks: during interstellar travel humans face a 25,000% increase in radiation compared to levels at the earth surface, muscle and bone loss progresses fast due to the micro-gravity environment, micro-meteorites can puncture the spacecraft, astronauts can experience temperatures as low as -130°C and as high as 120°C, spacesuits have to prevent bodily fluids from vacuum boiling while highest-performance suits only work in LEO and not beyond as well as cosmic rays which are shielded on Earth through its magnetic field severely damage the human DNA leading to cell mutation and cancers.
Working on feasible solutions to mitigate these risks and learning from past disasters to increase resiliency will be key to enable long-term space travel – many lessons cold be transferred into the construction industry. In William Starbuck and Moshe Farjoun’s Organization at the Limit: Lessons from the Columbia Disaster, the total failure of NASA, a high-risk, high-reward organization was analysed.
The authors describe NASA as a “large, elaborate and mature organization, which operates risky and complex technologies in an environment that emits ambiguous signals. In particular, NASA’s space shuttle, Columbia, disintegrated during re-entry, after completing its 16-day scientific research mission. All seven astronauts on board the Space Shuttle were killed. The Columbia Accident Investigation Board stated that this disaster was a product of NASA’s history, cultural traits, and long-term organizational practices.”
[edit] 6. Put humans at the centre
It is all about purpose, flexibility, liveability, well-being and happiness:
A human-centric perspective is not only crucial in the construction sector but also when entering outer space – it becomes a question of survival. Being aware that highest levels of ease and comfort is the optimal condition for human life in space, while little habitability only allows for bare survival. Therefore, spacecraft concepts using a so-called human-centred design (HCD) are irrefutable.
Recent research shows that HCD concepts such as modularity, interlocking design and sensory stimulation areas lead to dramatic enhancements to the aircrew’s mental and physical well-being.
[edit] 7. Create high-performance organisations
Attracting the right people is vital in fostering a healthy culture:
Josh Bersin, founder and principal at Bersin by Deloitte, highlights that “we have a retention crisis. Culture, engagement and employee retention are now the top talent challenges facing business leaders. More than half of business leaders rate this issue urgent. I recently met with one of the world’s biggest industrial manufacturers on the East Coast and they lamented losing top aerospace engineers to Google. They’re scratching their heads to figure out how to prevent more top engineers from leaving.”
This is not different to the construction sector: Innovative and young organisations with a focus on culture have a competitive advantage. Corporate culture can be defined as the aggregate of values, behaviours and rituals that build the foundation of an organisation.
As Bersin puts it: “You can feel culture when you visit a company, because it is often evident in people’s behaviour, enthusiasm and the space itself.”
[edit] 8. Collaborate beyond boundaries
Encourage public-private-civic cooperation, increase private investment and design innovative funding models:
Not as old as public-private partnerships (PPP) in infrastructure and transportation (a river transportation session on the Rhine dates back to 1438 and the Paris water distribution PPP is from 1792), but at least, in 2015, NASA celebrated its 100th anniversary of PPPs in aerospace.
James Pura, President of the Space Frontier Foundation, calls for action, saying that “the past decade has seen an increased focus on the commercialisation of space, and we urge Congress to allow NASA to return to its roots, and do for the emerging commercial space industry what NASA did for the emerging aviation industry 100 years ago. Smartly designed public-private partnerships will trump laissez faire every time, and everyone will benefit in the long run.”
The innovative power of the private sector could be seen in the early 2000s when entrepreneurs began designing and thereafter deploying competitive and innovative space systems superior and significantly more affordable than the national-monopoly governmental systems. The latest offerings have introduced substantial market competition in space launch services after 2010 that had not been present previously.
[edit] 9. Know that only the sky is the limit
The importance of fast-track technological innovation:
Technological innovation is the lifeblood of the aerospace industry. As any industry, companies in this sector are better in executing and optimising their existing business than in innovating or in creatively designing novel business models. Key to historical successes in aerospace are the level of aspiration and the far-reaching vision. What can the construction industry do to create this level of aspiration?
Take for example, the aspirational concept of a space elevator that can catapult people and cargo from the Earth’s surface into outer space. This advancement could mean the end to the era of rockets. But making them a reality is a major challenge. To construct a space elevator on our planet, the cable material would need to be both stronger and lighter (i.e. having greater specific strength than any currently known material).
Development of new materials which could meet the demanding specific strength requirement is necessary to advance beyond concept stage. Carbon nanotubes (CNTs), boron nitride nanotubes or diamond nanothreads have been identified as possibly being able to meet the specific strength requirements for such a technological innovation.
[edit] 10. Seek cosmic trust and integrity
A new frontier requires universal ethics and trusted partnerships:
Many construction projects fail due to one key root cause: deteriorating trust. Complex stakeholder relationships have to be grounded in trust, integrity and respect to ensure long-term commitments and minimise uncertainty. Strong and effective business relationships and business ethics are vital for the success of aerospace programmes.
The history of the aerospace technology provides many examples of how novel technologies were adopted and how barriers had been crossed without enough foresight to human actions, which ultimately caused serious complications that could have been avoided in the first place.
Many of today’s advancements, in particular related to big data analytics, machine learning and artificial intelligence will have unprecedented consequences. Many may still see these impending ethical concerns as roadblocks to the advance of science and industry. But as Patrick Lin, Research Director of the Nanoethics Group at California Polytechnic State University, puts it: “If we’ve learned anything from history, it’s that ethics must go hand in hand with technology and business, no matter where we find ourselves in this universe.”
Written by
Michael Buehler, Head of Infrastructure & Urban Development, World Economic Forum
This article was originally published on the Future of Construction Knowledge Sharing Platformand the WEF Agenda Blog.
[edit] Find out more
[edit] Related articles on Designing Buildings Wiki
- Advanced construction technology.
- Advanced manufacturing.
- All-Party Parliamentary Design and Innovation Group.
- Architecture and the need for innovation.
- Artificial intelligence and civil engineering.
- Augmented reality in construction.
- Barriers to innovation and Construction 2025.
- Construction innovation.
- Information and communications technology in construction.
- Innovation in construction projects.
- Innovation – the key differentiator.
- Is Disruptive Innovation possible in the Construction Industry?
- Low Impact Building Innovation Platform.
- Lunar architecture.
- Modern methods of construction.
- Open Innovation programme.
- Rethinking Construction Innovation and Research: A Review of Government Policies and Practices.
- Shaping the Future of Construction: Inspiring innovators redefine the industry.
- Smart buildings.
- Unprecedented Innovation and New Technologies on the Horizon.
--Future of Construction 14:11, 20 Jun 2017 (BST)
Featured articles and news
From mud bricks to smart concrete
A brief history of building materials.
Building automation and control systems market study
BSRIA 2024 North America BACS software & services.
Impact of digital technology on productivity in construction
New CIOB academy guidance for companies of all sizes.
Demolition and retrofit approaches in Planning Policy
MHCLG survey informing potential government updates.
Expert taskforce to spearhead new, new town generation
Sir Michael Lyons given 12 months for recommendations.
Government policy statement on new towns
A coded vision for a new generation of new towns.
AT Principal Designer exemplars published
Supporting clear and comprehensive demonstration of the skills required.
Homes England goes to TOWN for co-housing project
Marmalade Lane developer selected for Northstowe neighbourhood.
Cohousing and related approaches to solve housing issues
Different forms of community housing explained with examples.
Alternative and off-grid housing communities in the UK
From Hockerton Housing Project to Tinkers Bubble.
Skills gap highlighted to Minister for Industry
Key opportunity in mission for economic growth and net-zero.
Specifying XPS in masonry cavity walls below DPC level
Moisture requirements, DPCs and third party certification.
Types of rigid foam insulation
A brief description and some of the main construction types.
Metal composite material panel systems MCM and MCP
Sandwich finishes, forms, details, core and their impacts.
Cumbria's vernacular architecture
A history of building impeded by unsettled times.
CIOB and MMC Ireland announce strategic partnership
For better working conditions, and a more productive construction sector.
Comments
Cosmic insights - 10 ways aerospace can shape the future of construction
1. **Advanced Materials:** Aerospace research has led to the development of high-performance materials like carbon composites and nanomaterials. These materials can revolutionize the construction industry by making buildings lighter, stronger, and more durable.
2. **Prefab and Modular Construction:** Aerospace engineering has perfected the art of prefabrication and modular assembly for aircraft. Applying these principles to construction can significantly reduce construction timelines, minimize waste, and improve efficiency.
3. **3D Printing:** Aerospace industries have embraced 3D printing for manufacturing complex components. This technology can be adopted in construction to create intricate architectural designs and construct buildings more quickly and affordably.
4. **Robotics and Automation:** Aerospace utilizes robotics extensively for various tasks. Implementing robotics and automation in construction can enhance safety, precision, and productivity on construction sites.
5. **Drones for Surveys and Inspections:** Drones used in aerospace for surveillance and exploration can be employed in construction to conduct surveys, monitor construction progress, and perform inspections of tall structures.
6. **Smart Materials and Sensors:** Aerospace applications often use smart materials and sensors for monitoring structural integrity. In construction, these technologies can enable real-time monitoring of buildings for potential issues and maintenance needs.
7. **Sustainable Practices:** Aerospace has a strong focus on sustainability due to its environmental impact. Applying similar sustainable practices in construction can lead to eco-friendly buildings, energy-efficient systems, and reduced carbon footprints.
8. **Geospatial Technology:** Aerospace relies on geospatial technology for navigation and positioning. Integrating this technology in construction can improve site planning, optimize resource utilization, and enhance project management.
9. **Air Traffic Management for Urban Mobility:** Aerospace technology developed for air traffic management can be adapted for future urban mobility systems, including aerial transportation and smart city planning.
10. **Inspiring Architectural Design:** The innovative and futuristic designs of aerospace vehicles can inspire architects to create unique and visionary buildings that push the boundaries of traditional construction.
By integrating aerospace technologies and principles into the construction industry, we can pave the way for a more efficient, sustainable, and innovative future of construction. The convergence of these two industries may bring forth groundbreaking advancements that reshape the way we build and live in our urban environments.