Driven piles
Contents |
[edit] Introduction
Driven piles, also known as displacement piles, are a commonly-used form of building foundation that provide support for structures, transfering their load to layers of soil or rock that have sufficient bearing capacity and suitable settlement characteristics.
Driven piles are commonly used to support buildings, tanks, towers, walls and bridges, and can be the most cost-effective deep foundation solution. They can also be used in applications such as embankments, retaining walls, bulkheads, anchorage structures and cofferdams.
A foundation is described as piled when its depth is more than three times its breadth (Atkinson, 2007). A driven pile is a long, slender column made of preformed material and having a predetermined shape and size that can be installed by impact hammering, vibrating or pushing it into the ground to a design depth or resistance. If the soil is particularly dense, pre-drilling may be required to enable the pile to reach the design depth.
Driven piles are very adaptable and can be installed to accommodate compression, tension or lateral loads, with specifications set according to the needs of the structure, budget and soil conditions.
[edit] Types of driven pile
Types of driven pile include:
[edit] Steel
Standard steel sheet pile sections can be used to form box section piles, or H-section piles. These are percussion driven and used mainly in connection with marine structures. These have a load range of 300-1,700 kN and can reach up to 36 m length.
Steel screw piles have a cast iron helix, are rotary driven, and are used for support at shallow depths in soft silts and sands. They have a load range of 400-3,000 kN and can reach up to 24 m length. For more information, see Screw pile foundations.
Steel tube piles are used on marine structures and foundations in soft subsoils over a suitable bearing strata. They are usually bottom-driven with an internal drop hammer.
[edit] Pre-cast concrete
These can be square, octagonal, cylindrical or sheet piles. They are percussion driven piles which are used where bored piles would not be suitable owing to running water or very loose soils. They have a load range of 300-1,200 kN and can reach up to 30 m.
[edit] Timber
These are usually square sawn (but can also be circular, tapered, treated, untreated), and percussion driven. They can be used for small contracts on sites with shallow alluvial deposits overlying a suitable bearing strata (e.g. river banks and estuaries).
The load range of timber piles is 50-350 kN. They can be up to 12 m in length without splicing.
[edit] Composite
These are piles that use a combination, such as a concrete pile with a steel tip extension.
[edit] Quality
Driven piles are built to precise tolerances using high-strength materials and require good quality control. Consistency of quality is achieved by conforming to BS 8004:2015 as well as EC standards, and inspection prior to installation to verify integrity.
It is important that driven piles maintain their shape during installation, and are not damaged by the installation of subsequent piles.
Static or dynamic pile testing can be used to verify pile capacity, that is, the maximum load that a pile can carry without failure or excessive settlement of the ground. Pile capacity depends on three primary factors:
- The type of soil through which the pile is driven.
- The method of pile installation.
- The pile dimensions (cross section and length).
The shaft soil strength usually increases with time post-installation to provide additional load capacity. When incorporated into foundation design, this so-called ‘setup’ can enable the installation of fewer and shorter piles which results in less time, labour and materials being employed.
[edit] Pile installation
A pile hammer is used to drive piles into the ground, which compacts the soil around the side and leads to densification of the mass and increases its bearing capacity. However, with saturated, silty or cohesive, as opposed to granular, soil, poor drainage quality does not allow for the same densification. The water in the soil leads to a decrease in the overall bearing capacity and the pile design must allow for this.
The blow count is the number of times the pile must be struck in order to be driven down to the desired depth. Where there are variations in the subsurface conditions, pile lengths may have to be cut-off or spliced to extend their length.
As there are no special casings required and no delays related to concrete curing, driven piles are well suited to difficult site conditions. They can be used immediately when driven through water, can be installed to create temporary work platforms, and used in a large diameter form in earthquake-prone regions.
[edit] Advantages and disadvantages
The main advantages of using driven piles are:
- Piles can be pre-fabricated off-site which allows for efficient installation once on site.
- Driven piles displace and compact the soil which increases the bearing capacity of the pile. Whereas, other deep foundations tend to require the removal of soil which can lead to subsidence and other structural problems.
- They are cost-effective as a wide variety of materials and shapes can be easily fabricated to specified dimensions, which can result in the need for fewer piles on site.
- They generally have superior structural strength to other forms of foundation. Their high lateral and bending resistance makes them ideal for challenging conditions such as wind, water, seismic loading, and so on.
- Installation usually produces little spoil for removal and disposal.
The main disadvantages of using driven piles are:
- Advance planning is required for handling and driving, as well as the heavy equipment on site.
- To be able to withstand handling stresses during transportation and installation, precast or pre-stressed concrete piles must be adequately reinforced.
- It may not be possible to determine the exact length required and so splicing or cut-off techniques may be required which has time and cost implications.
- Driven piles may not be suitable where the ground has poor drainage qualities.
- Driven piles may not be suitable for compact sites, where the foundations of structures in close proximity may be affected by the vibrations caused by installation.
- Driven piles can be noisy to install and vibrations can result in complaints from neighbours, who may become aware of pre-existing problems with their own building that they then blame on piling vibration.
[edit] Related articles on Designing Buildings Wiki
- Bored piles.
- Building foundations.
- Caisson.
- Cofferdam.
- Continuous flight auger piles.
- Geothermal pile foundations.
- Ground anchor.
- Ground heave.
- Grouting in civil engineering.
- Micropiles.
- Moorfields building sets UK pile-loading record.
- Pad foundation.
- Pile cap.
- Pile foundations.
- Pile integrity test.
- Piled raft foundation.
- Piling equipment.
- Raft foundation.
- Retaining walls.
- Screw pile foundations.
- Settlement.
- Sheet piles.
- Strip foundation.
- Subsidence.
- Tension piles.
- Testing pile foundations.
- Types of pile foundation.
- Vibro-compaction.
- Vibro-replacement.
[edit] External references
Featured articles and news
What they are, how they work and why they are popular in many countries.
Plastic, recycling and its symbol
Student competition winning, M.C.Esher inspired Möbius strip design symbolising continuity within a finite entity.
Do you take the lead in a circular construction economy?
Help us develop and expand this wiki as a resource for academia and industry alike.
Warm Homes Plan Workforce Taskforce
Risks of undermining UK’s energy transition due to lack of electrotechnical industry representation, says ECA.
Cost Optimal Domestic Electrification CODE
Modelling retrofits only on costs that directly impact the consumer: upfront cost of equipment, energy costs and maintenance costs.
The Warm Homes Plan details released
What's new and what is not, with industry reactions.
Could AI and VR cause an increase the value of heritage?
The Orange book: 2026 Amendment 4 to BS 7671:2018
ECA welcomes IET and BSI content sign off.
How neural technologies could transform the design future
Enhancing legacy parametric engines, offering novel ways to explore solutions and generate geometry.
Key AI related terms to be aware of
With explanations from the UK government and other bodies.
From QS to further education teacher
Applying real world skills with the next generation.
A guide on how children can use LEGO to mirror real engineering processes.
Data infrastructure for next-generation materials science
Research Data Express to automate data processing and create AI-ready datasets for materials research.
Wired for the Future with ECA; powering skills and progress
ECA South Wales Business Day 2025, a day to remember.
AI for the conservation professional
A level of sophistication previously reserved for science fiction.
Biomass harvested in cycles of less than ten years.
An interview with the new CIAT President
Usman Yaqub BSc (Hons) PCIAT MFPWS.
Cost benefit model report of building safety regime in Wales
Proposed policy option costs for design and construction stage of the new building safety regime in Wales.
Do you receive our free biweekly newsletter?
If not you can sign up to receive it in your mailbox here.

























