Construction tolerances
The components used to construct buildings are often fabricated, assembled or formed on site, often by hand, in conditions that may be less than ideal, and using materials with inherent ‘imperfections’. Whilst it is easy to draw a straight line on a drawing, to give an precise dimension, an exact mix or position it is impossible to construct, for example, concrete that is perfectly straight, simply by virtue of the inherent properties of the material itself.
It can be difficult therefore to determine whether a variation from perfection is simply a function of the nature of a particular type of construction or material, or whether it constitutes a defect. For this reason it is important to specify allowable variations, or ‘tolerances’, that are not considered to be defects.
The concept of tolerances is also be important when assembling a number of components, as some items may have very little flexibility to accommodate variations in neighbouring items. For example, it may be relatively straight forward to adjust the setting out of brickwork to accommodate a slight variation in the size of a timber beam, or simply to cut the beam on site, but if a double glazing unit is even a millimetre larger than the opening for which it is intended, it simply will not fit. Even when individual items appear to be reasonably close to what was specified, variations can accumulate when a number of components are assembled, and this can create a clash with an item that may have a low tolerance.
This is becoming more important as the number of items prefabricated off site has increased, and so there is less scope for changes on site to make things fit.
In addition to dimensions, tolerances may be used to specify allowable variations in strength, stability, the mix of a material, the performance of a system, temperature ranges and so on.
There are a thousands of different standards available setting out accepted classes and ranges of tolerance for different materials, components, systems, construction techniques, fabrication methods, installation techniques and building types. These may range from relatively large tolerances for site layouts or landscaping to very precise tolerances for manufactured components.
It is important that tolerances are clearly specified in contract documents and that they are properly understood by designers, fabricators, contractors and site supervisors.
NB Government Functional Standard, GovS 002: Project delivery; portfolio, programme and project management, Version: 2.0, published on 15 July 2021 by HM Government, defines tolerance as: ‘The permissible deviation above and below a plan’s target for time and cost without escalating the deviation to the next level of management. There can also be tolerance levels for quality, scope, benefit and risk. Tolerance is applied at project, stage and team levels.’
The BSRIA guide to 'Commissioning Air Systems' (BG 49/2024), written by by Keith Barker and published by BSRIA in March 2024, explains how to commission ducted air distribution systems in buildings. It was originally published in 2013, then 2015 with the latest update in 2024. It defines tolerance as: 'The permissible range of variation from the specified design value.'
[edit] Related articles on Designing Buildings
- Accuracy.
- Buildability.
- Building information modelling.
- Clash avoidance.
- Construction quality.
- Defects.
- Design coordination.
- Offsite manufacturing.
- Prefabrication.
- Precision.
- Quality control.
- Samples and mock-ups.
- Site inspection.
- Site inspector.
- Spacing.
- Specification.
- Testing construction materials.
- Types of drawing.
Featured articles and news
Shading for housing, a design guide
A look back at embedding a new culture of shading.
The Architectural Technology Awards
The AT Awards 2025 are open for entries!
ECA Blueprint for Electrification
The 'mosaic of interconnected challenges' and how to deliver the UK’s Transition to Clean Power.
Grenfell Tower Principal Contractor Award notice
Tower repair and maintenance contractor announced as demolition contractor.
Passivhaus social homes benefit from heat pump service
Sixteen new homes designed and built to achieve Passivhaus constructed in Dumfries & Galloway.
CABE Publishes Results of 2025 Building Control Survey
Concern over lack of understanding of how roles have changed since the introduction of the BSA 2022.
British Architectural Sculpture 1851-1951
A rich heritage of decorative and figurative sculpture. Book review.
A programme to tackle the lack of diversity.
Independent Building Control review panel
Five members of the newly established, Grenfell Tower Inquiry recommended, panel appointed.
Welsh Recharging Electrical Skills Charter progresses
ECA progressing on the ‘asks’ of the Recharging Electrical Skills Charter at the Senedd in Wales.
A brief history from 1890s to 2020s.
CIOB and CORBON combine forces
To elevate professional standards in Nigeria’s construction industry.
Amendment to the GB Energy Bill welcomed by ECA
Move prevents nationally-owned energy company from investing in solar panels produced by modern slavery.
Gregor Harvie argues that AI is state-sanctioned theft of IP.
Experimental AI housing target help for councils
Experimental AI could help councils meet housing targets by digitising records.
BSRIA Occupant Wellbeing survey BOW
Occupant satisfaction and wellbeing tool inc. physical environment, indoor facilities, functionality and accessibility.