Construction tolerances
The components used to construct buildings are often fabricated, assembled or formed on site, often by hand, in conditions that may be less than ideal, and using materials with inherent ‘imperfections’. Whilst it is easy to draw a straight line on a drawing, to give an precise dimension, an exact mix or position it is impossible to construct, for example, concrete that is perfectly straight, simply by virtue of the inherent properties of the material itself.
It can be difficult therefore to determine whether a variation from perfection is simply a function of the nature of a particular type of construction or material, or whether it constitutes a defect. For this reason it is important to specify allowable variations, or ‘tolerances’, that are not considered to be defects.
The concept of tolerances is also be important when assembling a number of components, as some items may have very little flexibility to accommodate variations in neighbouring items. For example, it may be relatively straight forward to adjust the setting out of brickwork to accommodate a slight variation in the size of a timber beam, or simply to cut the beam on site, but if a double glazing unit is even a millimetre larger than the opening for which it is intended, it simply will not fit. Even when individual items appear to be reasonably close to what was specified, variations can accumulate when a number of components are assembled, and this can create a clash with an item that may have a low tolerance.
This is becoming more important as the number of items prefabricated off site has increased, and so there is less scope for changes on site to make things fit.
In addition to dimensions, tolerances may be used to specify allowable variations in strength, stability, the mix of a material, the performance of a system, temperature ranges and so on.
There are a thousands of different standards available setting out accepted classes and ranges of tolerance for different materials, components, systems, construction techniques, fabrication methods, installation techniques and building types. These may range from relatively large tolerances for site layouts or landscaping to very precise tolerances for manufactured components.
It is important that tolerances are clearly specified in contract documents and that they are properly understood by designers, fabricators, contractors and site supervisors.
NB Government Functional Standard, GovS 002: Project delivery; portfolio, programme and project management, Version: 2.0, published on 15 July 2021 by HM Government, defines tolerance as: ‘The permissible deviation above and below a plan’s target for time and cost without escalating the deviation to the next level of management. There can also be tolerance levels for quality, scope, benefit and risk. Tolerance is applied at project, stage and team levels.’
The BSRIA guide to 'Commissioning Air Systems' (BG 49/2024), written by by Keith Barker and published by BSRIA in March 2024, explains how to commission ducted air distribution systems in buildings. It was originally published in 2013, then 2015 with the latest update in 2024. It defines tolerance as: 'The permissible range of variation from the specified design value.'
[edit] Related articles on Designing Buildings
- Accuracy.
- Buildability.
- Building information modelling.
- Clash avoidance.
- Construction quality.
- Defects.
- Design coordination.
- Offsite manufacturing.
- Prefabrication.
- Precision.
- Quality control.
- Samples and mock-ups.
- Site inspection.
- Site inspector.
- Spacing.
- Specification.
- Testing construction materials.
- Types of drawing.
Featured articles and news
Building Safety recap January, 2026
What we missed at the end of last year, and at the start of this...
National Apprenticeship Week 2026, 9-15 Feb
Shining a light on the positive impacts for businesses, their apprentices and the wider economy alike.
Applications and benefits of acoustic flooring
From commercial to retail.
From solid to sprung and ribbed to raised.
Strengthening industry collaboration in Hong Kong
Hong Kong Institute of Construction and The Chartered Institute of Building sign Memorandum of Understanding.
A detailed description fron the experts at Cornish Lime.
IHBC planning for growth with corporate plan development
Grow with the Institute by volunteering and CP25 consultation.
Connecting ambition and action for designers and specifiers.
Electrical skills gap deepens as apprenticeship starts fall despite surging demand says ECA.
Built environment bodies deepen joint action on EDI
B.E.Inclusive initiative agree next phase of joint equity, diversity and inclusion (EDI) action plan.
Recognising culture as key to sustainable economic growth
Creative UK Provocation paper: Culture as Growth Infrastructure.
Futurebuild and UK Construction Week London Unite
Creating the UK’s Built Environment Super Event and over 25 other key partnerships.
Welsh and Scottish 2026 elections
Manifestos for the built environment for upcoming same May day elections.
Advancing BIM education with a competency framework
“We don’t need people who can just draw in 3D. We need people who can think in data.”
Guidance notes to prepare for April ERA changes
From the Electrical Contractors' Association Employee Relations team.
Significant changes to be seen from the new ERA in 2026 and 2027, starting on 6 April 2026.
First aid in the modern workplace with St John Ambulance.
Solar panels, pitched roofs and risk of fire spread
60% increase in solar panel fires prompts tests and installation warnings.
Modernising heat networks with Heat interface unit
Why HIUs hold the key to efficiency upgrades.
























