Double glazing
The term 'glazing' refers to the glass component of a building's façade or internal surfaces.
Historically, the external windows of buildings were generally single glazed, consisting of just one layer of glass, however, a substantial amount of heat is lost through single glazing, and it also transmits a significant amount of noise, so mulit-layerd glazing systems were developed such as double glazing and triple glazing.
Double glazing comprises two layers of glass separated by a spacer bar (also known as a profile); a continuous hollow frame typically made of aluminium or a low heat-conductive material. The spacer bar is bonded to the panes using a primary and secondary seal which creates an airtight cavity, typically with 6-20 mm between the two layers of glass. This space is filled with air or with a gas such as argon, which improves the thermal properties of the window. Larger cavities may be provided to achieve greater sound reduction.
A desiccant in the spacer bar absorbs any residual moisture within the cavity, preventing internal misting as a result of condensation.
U-values (sometimes referred to as heat transfer coefficients or thermal transmittances) are used to measure how effective elements of a buildings fabric are as insulators. That is, how effective they are at preventing heat from transmitting between the inside and the outside of a building. Typically, the U-value of single glazing is around 4.8 to 5.8 W/m²K, whilst double glazing is around 1.2 to 3.7 W/m²K. NB Triple can achieve a U-value below 1 W/m²K.
Thermal performance is affected by the quality of the installation, the inclusion of thermal breaks in the frame, suitable weather seals, the gas used to fill the units, and the type of glass used. Low-e glass has a coating added to one or more of its surfaces to reduce its emissivity so that it reflects, rather than absorbs, a higher proportion of long-wave infra-red radiation..
The sound reduction achieved by single glazing (6 mm thick) is typically around 27 dB, whilst double glazing (100 mm air space) is around 42 dB.
The sound reduction achieved by double glazing is affected by:
- Good installation to ensure airtightness
- Sound absorbent linings to the reveals within the air space.
- The weight of glass used – the heavier the glass, the better the sound insulation.
- The size of air space between layers - up to 300 mm.
[edit] Related articles on Designing Buildings Wiki
- Air tightness in buildings.
- BFRC window rating scheme.
- Choosing the correct glazed facade heating system.
- Conservation rooflights.
- Domestic windows.
- Double glazing v triple glazing.
- Glass.
- Glazing.
- Low-E glass.
- Sash windows.
- Secondary glazing.
- Thermal conduction in buildings.
- Triple glazing.
- Types of window.
- U-values.
- Window.
Featured articles and news
Welsh and Scottish 2026 elections
Manifestos for the built environment for upcoming same May day elections.
Advancing BIM education with a competency framework
“We don’t need people who can just draw in 3D. We need people who can think in data.”
Guidance notes to prepare for April ERA changes
From the Electrical Contractors' Association Employee Relations team.
Significant changes to be seen from the new ERA in 2026 and 2027, starting on 6 April 2026.
First aid in the modern workplace with St John Ambulance.
Ireland's National Residential Retrofit Plan
Staged initiatives introduced step by step.
Solar panels, pitched roofs and risk of fire spread
60% increase in solar panel fires prompts tests and installation warnings.
Modernising heat networks with Heat interface unit
Why HIUs hold the key to efficiency upgrades.
Reflecting on the work of the CIOB Academy
Looking back on 2025 and where it's going next.
Procurement in construction: Knowledge hub
Brief, overview, key articles and over 1000 more covering procurement.
Sir John Betjeman’s love of Victorian church architecture.
Exchange for Change for UK deposit return scheme
The UK Deposit Management Organisation established to deliver Deposit Return Scheme unveils trading name.
A guide to integrating heat pumps
As the Future Homes Standard approaches Future Homes Hub publishes hints and tips for Architects and Architectural Technologists.
BSR as a standalone body; statements, key roles, context
Statements from key figures in key and changing roles.
Resident engagement as the key to successful retrofits
Retrofit is about people, not just buildings, from early starts to beyond handover.






















Comments