Low-e glass
The term ‘low-e glass’ is used to describe glass that has a coating added to one or more of its surfaces to reduce its emissivity.
Emissivity is an indicator of the amount of long-wave infra-red radiation which a surface (such as the façade of a building) will emit to its surroundings. According to Kirchoff's law the emissivity of a surface is equal to its radiant absorptivity at a given temperature and wavelength. It is expressed as a proportion of 1, so if a surface absorbs 40% of the long-wave infra-red radiation incident on its surface, it has an emissivity of 0.4.
All bodies which are hotter than 0°K emit thermal radiation and absorb thermal radiation. In general, the higher the temperature of a body, the lower the average wavelength of the radiation it emits. The range of terrestrial temperatures experienced within the built environment is comparatively ‘cold’ compared to the sun and so they are radiating at a much longer wavelength. This anomaly allows us to distinguish between short-wave solar radiation and long-wave infra-red radiation (terrestrial radiation).
Typically, glass is relatively transparent to short-wave solar radiation, but opaque to long-wave infra-red radiation. This is said to produce a ‘greenhouse effect’, where solar radiation enters a space, and heats it up, but the resulting long-wave infra-red radiation emitted by the hot internal surfaces is unable to escape.
However, glass has a relatively high emissivity. This means that although it does not transmit long-wave infra-red radiation incident on its surface, it does absorb it. This absorbed ‘heat’ is then re-radiated.
Low-e coatings can be used to reduce the effective emissivity of the surface of glass so that it reflects, rather than absorbs, a higher proportion of long-wave infra-red radiation.
In cooler climates this means that long-wave infra-red radiation that builds up inside a building is reflected by the glass back into the space, rather than being absorbed by the glass and then partially re-radiated to the outside. This reduces heat loss and so the need for artificial heating.
In hotter climates, a low-e coating means that long-wave infra-red radiation outside the building is reflected back out of the building, rather than being absorbed by the glass and then partially re-radiated to the inside. This reduces the heat build-up inside the building and so the need for cooling. In hotter climates, a low-e coating might be used in conjunction with solar-control glass to reduce the amount of short-wave solar radiation entering the building.
Low-e coatings can reduce the emissivity of glazing from more than 0.8 to 0.2 or even as low as 0.04. Coatings tend to be either hard ‘pyrolytic’ coatings which are applied to molten glass, or soft ‘sputtered’ coatings, which generally need to be protected within the sealed unit.
[edit] Related articles on Designing Buildings
- Angular selective shading systems.
- Brise soleil.
- Choosing the correct glazed facade heating system.
- Computational fluid dynamics (CFD).
- Curved glass.
- Double glazing.
- Double glazing v triple glazing.
- Emissivity.
- g-value.
- Glass manifestation.
- Solar heat gain coefficient.
- Thermal bridge.
- Thermal optical properties.
- Triple glazing.
- U value.
Featured articles and news
Conservation and transformation
Reading Ruskin’s cultural heritage. Book review.
Renovating Union Chain Bridge.
AI tools for planning, design, construction and management
A long, continually expanding list, any more to add?
Robots in the construction industry
From cultural characterisations to construction sites.
Empowering construction with AI integration
New horizons with a human touch.
Key AI related terms to be aware of
With explanations from the UK government.
A Better Hiring Toolkit for construction
Tooling up to hire under best practice standards in the sector.
Recharging Electrical Skills in Wales
Step by step collaborative solutions.
Ireland budget announcement 2025
CIOB responds with positivity, criticism and clarity.
The continued ISG fall out, where to go?
Support for ISG contractors, companies and employees.
New HES national centre for traditional building retrofit
Announced as HES publishes survey results which reveal strong support for retrofit.
Retrofit of Buildings, a CIOB Technical Publication
Expected to become one of the largest activities in the global construction industry.
Scope determination appeals and the Building Safety Act
Process explained following release of appeals guidance.
The ECA industry focus video channel
Keeping update with the industry session by session.
Over 25 recorded informations sessions freely available.
AT Awards 2024 ceremony East London October 25th.
Revisiting the AT community at the 2023 awards evening.