Thermal bridging in buildings
A thermal bridge (sometimes referred to as thermal bridging, a cold bridge or thermal bypass) describes a situation in a building where there is a direct connection between the inside and outside through one or more elements that are more thermally conductive than the rest of the building envelope.
As a result, there will be wasteful heat transfer across this element, its internal surface temperature will be different from other, better insulated internal surfaces and there may be condensation where warm, moist internal air comes into contact with the, potentially cold, surface. This condensation can result in mould growth.
Thermal bridges are common in older buildings, which may be poorly constructed, poorly insulated, with single skin construction and single glazing.
In modern buildings, thermal bridging can occur because of poor design, or poor workmanship. This is common where elements of the building penetrate through its insulated fabric, for example around glazing, or where the structure penetrates the building envelope, such as at balconies.
However, as buildings have become better insulated, with increasingly strict regulation, so thermal bridges that might previously have been considered insignificant in terms of the overall thermal performance of a building, can actually be the cause of considerable thermal inefficiency. There is the potential for such inefficiency at every opening and every junction (even in party walls).
Thermal bridges can be categorised as 'repeating' for example where wall ties regularly bridge the cavity, or 'non-repeating' such as a wall junction or lintel.
The Approved Documents to Part L of the building regulations (Conservation of fuel and power) state that 'The building fabric should be constructed so that there are no reasonably avoidable thermal bridges in the insulation layers caused by gaps within the various elements, at the joints between elements and at the edges of elements such as those around window and door openings.'
They require that where unaccredited construction details are used, generic linear thermal bridge values must be increased by levels (depending on the building type) set out in the Approved Documents for the calculations of building emission rates (BER) or dwelling emission rates (DER).
Thermal bridges in completed buildings can be revealed with thermal imaging cameras (see Thermographic survey), but they can be very difficult to rectify, particularly if they are repeated throughout a building.
NB Assessing risks in insulation retrofits using hygrothermal software tools, Heat and moisture transport in internally insulated stone walls, by Joseph Little, Calina Ferraro and Beñat Arregi, published by Historic Environment Scotland in 2015, defines thermal bypass as: ‘Heat transfer that bypasses the conductive or conductive-radiative heat transfer between two regions. It may well be a major contributor to the performance gap that appears to exist between predicted and actual thermal performance. Bypass mechanisms include air leakage, thermal looping, wind washing etc.’
[edit] Related articles on Designing Buildings
- Accredited construction details ACDs.
- Assessing the effects of thermal bridging at junctions and around openings.
- Building fabric.
- Cavity wall.
- Co-heating test.
- Computational fluid dynamics.
- Conventions for calculating linear thermal transmittance and temperature factors.
- Emission rates in the building regulations.
- Floor insulation.
- g-values.
- Insulation for ground floors.
- Insulation specification.
- Interstitial condensation.
- Mould growth.
- Roof insulation.
- Reducing thermal bridging at junctions when designing and installing solid wall insulation FB 61.
- Solid wall insulation.
- Thermal bridging and the Future Homes Standard.
- Thermal comfort.
- Thermal imaging to improve energy efficiency in building design.
- Thermographic survey.
- U-values.
Featured articles and news
Professional practical experience for Architects in training
The long process to transform the nature of education and professional practical experience in the Architecture profession following recent reports.
A people-first approach to retrofit
Moving away from the destructive paradigm of fabric-first.
International Electrician Day, 10 June 2025
Celebrating the role of electrical engineers from André-Marie Amperè, today and for the future.
New guide for clients launched at Houses of Parliament
'There has never been a more important time for clients to step up and ...ask the right questions'
The impact of recycled slate tiles
Innovation across the decades.
EPC changes for existing buildings
Changes and their context as the new RdSAP methodology comes into use from 15 June.
Skills England publishes Sector skills needs assessments
Priority areas relating to the built environment highlighted and described in brief.
BSRIA HVAC Market Watch - May 2025 Edition
Heat Pump Market Outlook: Policy, Performance & Refrigerant Trends for 2025–2028.
Committing to EDI in construction with CIOB
Built Environment professional bodies deepen commitment to EDI with two new signatories: CIAT and CICES.
Government Grenfell progress report at a glance
Line by line recomendation overview, with links to more details.
An engaging and lively review of his professional life.
Sustainable heating for listed buildings
A problem that needs to be approached intelligently.
50th Golden anniversary ECA Edmundson apprentice award
Deadline for entries has been extended to Friday 27 June, so don't miss out!
CIAT at the London Festival of Architecture
Designing for Everyone: Breaking Barriers in Inclusive Architecture.
Mixed reactions to apprenticeship and skills reform 2025
A 'welcome shift' for some and a 'backwards step' for others.