Co-heating test
There is significant evidence to suggest that buildings do not perform as well when they are completed as was anticipated when they were being designed. The difference between anticipated and actual performance is known as the performance gap.
The co-heating test is used to measure the amount of heat lost through the thermal envelope of completed buildings. It provides an assessment of the as-built performance of whole buildings, that is, their heat loss coefficient (HLC). It is calculated by comparing the heat input into a building against the disparity between temperatures inside and outside the building.
The test measures the heat that is lost through the elements of the building fabric such as walls, floor, roof, doors, windows, and so on. Comparing this to the heat loss that was expected during the design process (such as heat loss calculated for the Standard Assessment Procedure (SAP)) can identify problems and help improve the design of buildings in the future.
The test is carried out after the completion of a new-build or refurbishment project, but before it is occupied. It involves heating the building to a constant internal temperature, usually 25°C, over a period of time, typically 1 to 3 weeks. This constant temperature is achieved by using fan-assisted convector heaters with further fan assistance to ensure good air mixing so that there is an even temperature throughout the building. An integral and differential controller linked to temperature sensors is used to maintain the temperature to ±0.2°C.
During the test the building should remain unoccupied and any equipment that may use or generate energy should be switched off. Plotting the daily heat input against the daily difference in temperature between interior and exterior, indicates the heat loss coefficient as a static value in W/K.
For optimum testing, with an internal temperature of 25°C, there should be a temperature difference of at least 10°C between the interior and exterior, which is why tests tend to be carried out over winter months between October and April. This also helps mitigate against the impact of solar gain which requires a correction to be applied.
Co-heating testing may be beneficial where buildings are representative of standard types to be replicated on a larger scale with improvements made in response to the test's findings, or where different construction or contracting methods need to be compared.
The testing may not be suitable where buildings have not been able to dry out for several months before testing, where buildings are apartments or multi-use, or where buildings are bespoke designs that are not going to be replicated.
There has been some criticism of the test as it requires that buildings are undisturbed and unoccupied for a long period of time, and because of the potential impact of external weather conditions and in particular solar radiation on the results.
[edit] Related articles on Designing Buildings Wiki
- Building heating systems.
- Building performance evaluation.
- Building performance metrics.
- Cold bridge.
- Heat transfer.
- Performance gap.
- Radiant heating.
- Standard assessment procedure.
- Thermal comfort.
- U value.
[edit] External references
- BPE Guide - Co-heating tests
- Open Energy Monitor - Measuring thermal performance
Featured articles and news
Industry Competence Steering Group restructure
ICSG transitions to the Industry Competence Committee (ICC) under the Building Safety Regulator (BSR).
Principal Contractor Competency Certification Scheme
CIOB PCCCS competence framework for Principal Contractors.
The CIAT Principal Designer register
Issues explained via a series of FAQs.
Conservation in the age of the fourth (digital) industrial revolution.
Shaping the future of heritage
Embracing the evolution of economic thinking.
Ministers to unleash biggest building boom in half a century
50 major infrastructure projects, 5 billion for housing and 1.5 million homes.
RIBA Principal Designer Practice Note published
With key descriptions, best practice examples and FAQs, with supporting template resources.
Electrical businesses brace for project delays in 2025
BEB survey reveals over half worried about impact of delays.
Accelerating the remediation of buildings with unsafe cladding in England
The government publishes its Remediation Acceleration Plan.
Airtightness in raised access plenum floors
New testing guidance from BSRIA out now.
Picking up the hard hat on site or not
Common factors preventing workers using head protection and how to solve them.
Building trust with customers through endorsed trades
Commitment to quality demonstrated through government endorsed scheme.
New guidance for preparing structural submissions for Gateways 2 and 3
Published by the The Institution of Structural Engineers.
CIOB launches global mental health survey
To address the silent mental health crisis in construction.
New categories in sustainability, health and safety, and emerging talent.
Key takeaways from the BSRIA Briefing 2024
Not just waiting for Net Zero, but driving it.