Heat loss
Heat is the energy that is transferred between different systems as a result of thermodynamic interactions.
Heat loss is a measure of negative heat transfer through a building’s fabric from the inside to the outside. This can be due to either convection, conduction, radiation, mass transfer, or a combination. The colder the outside temperature, the warmer the inside, and the worse the thermal insulation of the building fabric, the greater the heat loss will be.
Heat loss is typically measured in either kilowatts (kW) or British Thermal Units (BTUs).
U-values (sometimes referred to as heat transfer coefficients or thermal transmittances) are used to measure how effective elements of a building's fabric are at insulating against heat loss (or heat gain). The lower the U-value of an element of a building's fabric, the more slowly heat is able to transmit through it, and so the better it performs as an insulator. Very broadly, the better (i.e. lower) the U-value of a building's fabric, the less energy is required to maintain comfortable conditions inside the building.
The building regulations require that reasonable provision be made to limit heat gains and losses through the fabric of new buildings and works to existing buildings. The approved documents to the buildings regulations set out the limiting standards for the properties of the fabric elements of the building, described in terms of maximum U-values. For more information see: Limiting fabric standards.
Typically, the older a building is, the more it will be susceptible to heat loss. This can be due to a combination of poor (or no) insulation, thermal bridging across the building envelope, single glazing, poor airtightness and so on,
Levels of heat loss will vary depending on the type of building; for example, a terraced house will lose a higher proportion of heat through the floor and roof rather than walls, whilst nearly all the heat loss from a flat will be through the outside walls.
The following estimates indicate the proportionate heat loss from a badly insulated house:
- Up to 25% through the roof.
- Up to 35% through outside walls.
- Up to 25% through doors and windows.
- Up to 15% through ground floors.
(Ref. www.ired.co.uk)
Some of the techniques that can be used to combat heat loss in existing buildings include:
- Draught-proofing.
- Roof insulation.
- Double-glazing.
- Floor insulation.
- Solid wall insulation.
[edit] Related articles on Designing Buildings
- Building performance.
- Emissivity.
- Heat gain.
- Heat pumps and heat waves: How overheating complicates ending gas in the UK.
- Heat transfer.
- Mean radiant temperature.
- Passive building design.
- The cavity wall real performance question.
- Thermal insulation for buildings.
- Thermal mass.
- Thermal resistance.
- U value.
- Vapour barrier.
Featured articles and news
Managing building safety risks
Across an existing residential portfolio, a client's perspective.
ECA support for Gate Safe’s Safe School Gates Campaign.
Core construction skills explained
Preparing for a career in construction.
Retrofitting for resilience with the Leicester Resilience Hub
Community-serving facilities, enhanced as support and essential services for climate-related disruptions.
Some of the articles relating to water, here to browse. Any missing?
Recognisable Gothic characters, designed to dramatically spout water away from buildings.
A case study and a warning to would-be developers
Creating four dwellings... after half a century of doing this job, why, oh why, is it so difficult?
Reform of the fire engineering profession
Fire Engineers Advisory Panel: Authoritative Statement, reactions and next steps.
Restoration and renewal of the Palace of Westminster
A complex project of cultural significance from full decant to EMI, opportunities and a potential a way forward.
Apprenticeships and the responsibility we share
Perspectives from the CIOB President as National Apprentice Week comes to a close.
The first line of defence against rain, wind and snow.
Building Safety recap January, 2026
What we missed at the end of last year, and at the start of this...
National Apprenticeship Week 2026, 9-15 Feb
Shining a light on the positive impacts for businesses, their apprentices and the wider economy alike.
Applications and benefits of acoustic flooring
From commercial to retail.
From solid to sprung and ribbed to raised.
Strengthening industry collaboration in Hong Kong
Hong Kong Institute of Construction and The Chartered Institute of Building sign Memorandum of Understanding.
A detailed description from the experts at Cornish Lime.






















