Curing
Contents |
[edit] Introduction
Curing is a term applied to the chemical process that describes a change in the state of materials, usually as they turn from liquid (or semi-liquid) to solid. It can apply to cement, concrete, adhesives, plasters, thermosetting plastics and other materials. It usually has important implications for strength development and so its effects must be considered carefully in the construction industry.
[edit] Concrete
The curing time for cast-in-place concrete can be anything from three days to two weeks. The process involves an exothermic reaction, i.e heat is given off. Ensuring the correct conditions for curing requires protecting the concrete from both high and low temperatures.
If freshly-poured concrete is not cured properly, it may:
- Set incorrectly and suffer fine cracking (‘crazing’) from shrinkage.
- Have an ultimate strength lower than the required design strength.
Both consequences could be catastrophic as cracks can allow the ingress of humidity and water which can cause corrosion of steel reinforcement or frost damage; while failing to reach its design strength will mean a weaker concrete than designed with potentially serious consequences.
[edit] Hydration
The strength of concrete depends on the reactions in its matrix and in particular on the growth of crystals. These are the result of the hydration process – the reaction between water and Portland cement. This process will continue almost indefinitely as long as there is water in the matrix. But a deficiency in water content will mean the crystals will not develop as they should and the concrete will:
- Not reach its design strength.
- Not achieve volume stability.
- Not be resistant to freeze-thaw cycles.
- Have lower resistance to abrasion and scaling.
- May not achieve target durability.
[edit] Temperature
Maintaining the correct temperature of the concrete is critical. It is currently thought that below 10°C sees a slow-down in hydration, while 4°C signals a virtual stop. In contrast, a temperature that is too high speeds up the exothermic reaction causing temperature differentials within the concrete that can lead to cracking. This causes weaker strength development as the matrix crystals have not developed as they should have.
[edit] Methods of curing concrete
Curing aims to control the rapid loss of moisture from the setting concrete, so the aim is to provide a seal to prevent or slow down the rate of water evaporation. However, methods differ according to the type of structure or curing requirement. Some of the more common curing methods include:
- Covering concrete work with polythene sheeting, particularly for vertical elements e.g columns.
- Covering with damp sand or damp hessian – applied as soon as the concrete hardens otherwise surface damage may result.
- Sprinkling or spraying.
- Ponding – can be used for horizontal surfaces such as slabs, roads, pavements etc. Involves placing small ponds of clay or sand across the surface which are filled with water. But water can leak out of the ponds and cause staining, and it is impractical for large areas.
- Steam curing.
- Membrane curing.
- Spray-on compounds.
- Formwork – can provide a degree of protection but this will depend on when it is struck. If it is left in place for four days or more, there may be no need to provide further protection after the formwork is removed. Time will therefore be an important consideration, as will the degree of exposure of the concrete work. Even if formwork is used as a method of protection, the tops of walls and columns will still require curing.
[edit] Curing time
The length of time for proper curing to take place will depend on specific conditions, national codes, etc. Flat concrete (e.g pavements, driveways, car parks etc) and structural concrete (e.g beams, columns, slabs, walls, retaining walls etc) typically require a seven-day curing time when temperatures are above 4°C. This usually allows the concrete to attain 70% of the specified compressive strength.
Curing time will depend on:
- Ambient weather conditions.
- Mix proportions.
- Specified strength.
- Size and shape of concrete being cast.
See also: Carbon dioxide curing.
[edit] Related articles on Designing Buildings
- Admixture, additive or agent.
- Admixtures in concrete.
- Alkali-activated binder.
- Alkali-aggregate reaction (AAR).
- Alkali-silica reaction (ASR).
- Carbon dioxide curing.
- Compressive strength.
- Laitance.
- Portland cement.
- Precast concrete.
- Reinforced concrete.
- Screed.
- Testing concrete.
- The properties of concrete.
Featured articles and news
CIAT responds to the updated National Planning Policy Framework
With key changes in the revised NPPF outlined.
Councils and communities highlighted for delivery of common-sense housing in planning overhaul
As government follows up with mandatory housing targets.
CIOB photographic competition final images revealed
Art of Building produces stunning images for another year.
HSE prosecutes company for putting workers at risk
Roofing company fined and its director sentenced.
Strategic restructure to transform industry competence
EBSSA becomes part of a new industry competence structure.
Major overhaul of planning committees proposed by government
Planning decisions set to be fast-tracked to tackle the housing crisis.
Industry Competence Steering Group restructure
ICSG transitions to the Industry Competence Committee (ICC) under the Building Safety Regulator (BSR).
Principal Contractor Competency Certification Scheme
CIOB PCCCS competence framework for Principal Contractors.
The CIAT Principal Designer register
Issues explained via a series of FAQs.
Conservation in the age of the fourth (digital) industrial revolution.
Shaping the future of heritage
Embracing the evolution of economic thinking.
Ministers to unleash biggest building boom in half a century
50 major infrastructure projects, 5 billion for housing and 1.5 million homes.
RIBA Principal Designer Practice Note published
With key descriptions, best practice examples and FAQs, with supporting template resources.
Electrical businesses brace for project delays in 2025
BEB survey reveals over half worried about impact of delays.
Accelerating the remediation of buildings with unsafe cladding in England
The government publishes its Remediation Acceleration Plan.
Airtightness in raised access plenum floors
New testing guidance from BSRIA out now.