Compressive strength
Materials used for structural purposes are usually classified according to their resistance to basic stresses such as compression, tension and shear.
Compression is a force that pushes the particles of a material closer together. For example, when a column supports a load, it is under compression and its height shortens, albeit often imperceivably. The opposite is tensile force which tends to elongate a material.
All materials can, to a certain degree, withstand compressive forces before they fail and it is at this point that compressive strength is measured. Therefore, the compressive strength of a material is usually stated as the maximum compression that the material can stand before failure.
Materials which can resist high, applied compressive forces before failure are said to have high compressive strengths.
Some materials are better than others at withstanding compression before failure occurs. Steel can withstand relatively high compressive forces. Other materials, such as concrete and ceramics, typically show much higher compressive strengths than tensile strengths. Depending on the material, failure can comprise fracture at the compressive strength limit or irreversible deformation.
[edit] Measuring compressive strength
It is possible to measure precisely the compressive strength of materials by conducting a compressive test under carefully controlled conditions using a universal testing machine. This can typically have testing capacities of up to 53 mega Newtons (MN) which is equal to a 5,404 ton force.
In building construction, testing the compressive strength of concrete is usually undertaken at different stages after it has been poured in order to allow sufficient time for strength development (eg after 28 days). Typically, a cube (or cylinder) of concrete is used as a test specimen, ensuring that the top and bottom surfaces are flat and parallel, and that both faces are a perfect cross-section, ie, at right angles to the vertical axis of the cube.
A compressive force is applied to the specimen gradually by the testing mechanism. Measuring the compressive strength using this method requires:
- The cross-sectional area of one of the cube’s faces, top or bottom (they should be identical), and
- The compressive force applied at the time of failure (defined as permanent deformation - ie an inability to assume its former shape once the compressive force is removed).
Once these measurements are available, the compressive strength (C or σc) can be calculated as:
[edit] C = F/A
where F is the maximum force (load) applied at the point of failure and A is the cross-sectional area of the specimen before the force was applied. It can be expressed in terms of N/m² or Pascals (where 1 Pascal (Pa) = 1 N/m²).
It is sometimes difficult to measure the compressive strength of ductile metals, such as mild steel, which have high compressive strengths. This is due to the failure mode of such materials. Typically, under a compressive load, mild steel deforms elastically up to a point; this is followed by plastic deformation and ultimately the specimen may be flattened without significant evidence of fracture. It can therefore be difficult to measure the precise point of compressive failure. For this reason, it is more common to quote the tensile strength of mild steel which is easier to obtain; as its tensile strength is always lower than its compressive strength, it can be used as the basis for calculations.
[edit] Related articles on Designing Buildings
- Arch.
- Barrel vault.
- Compressive strength of timber lattice columns for low-rise construction.
- Concrete.
- Dome.
- Elements of structure in buildings
- Engineer.
- Flying buttress.
- Mass concrete.
- Steel.
- Structural engineer.
- Structural principles.
- Substructure.
- Superstructure.
- Tower.
- Tensile strength.
- Tension.
- Types of structure.
- Voussoir.
Featured articles and news
SELECT three-point plan for action issued to MSPs
Call for Scottish regulation, green skills and recognition of electrotechnical industry as part of a manifesto for Scottish Parliamentary elections.
UCEM becomes the University of the Built Environment
Major milestone in its 106-year history, follows recent merger with London School of Architecture (LSE).
Professional practical experience for Architects in training
The long process to transform the nature of education and professional practical experience in the Architecture profession following recent reports.
A people-first approach to retrofit
Moving away from the destructive paradigm of fabric-first.
International Electrician Day, 10 June 2025
Celebrating the role of electrical engineers from André-Marie Amperè, today and for the future.
New guide for clients launched at Houses of Parliament
'There has never been a more important time for clients to step up and ...ask the right questions'
The impact of recycled slate tiles
Innovation across the decades.
EPC changes for existing buildings
Changes and their context as the new RdSAP methodology comes into use from 15 June.
Skills England publishes Sector skills needs assessments
Priority areas relating to the built environment highlighted and described in brief.
BSRIA HVAC Market Watch - May 2025 Edition
Heat Pump Market Outlook: Policy, Performance & Refrigerant Trends for 2025–2028.
Committing to EDI in construction with CIOB
Built Environment professional bodies deepen commitment to EDI with two new signatories: CIAT and CICES.
Government Grenfell progress report at a glance
Line by line recomendation overview, with links to more details.
An engaging and lively review of his professional life.
Sustainable heating for listed buildings
A problem that needs to be approached intelligently.
50th Golden anniversary ECA Edmundson apprentice award
Deadline for entries has been extended to Friday 27 June, so don't miss out!
CIAT at the London Festival of Architecture
Designing for Everyone: Breaking Barriers in Inclusive Architecture.
Mixed reactions to apprenticeship and skills reform 2025
A 'welcome shift' for some and a 'backwards step' for others.