Testing pile foundations
Contents |
[edit] Introduction
Pile foundations are deep foundations. They are formed by long, slender, columnar elements typically made from steel or reinforced concrete, or sometimes timber. A foundation is described as 'piled' when its depth is more than three times its breadth.
The bearing capacity of a pile is determined by several factors, including the size, shape and type of pile, as well as the particular soil properties. The calculation method that is used as a means of testing pile foundations depends upon the magnitude of the work involved, the soil type, and the engineer’s specification. Methods of calculation include:
- Dynamic pile formulae.
- Static formula.
- Test loading.
The integrity of, and presence of defects in, new and existing piles can be assessed by carrying out a pile integrity test.
[edit] Dynamic formulae
In mainly non-cohesive soils, dynamic formulae can be used to calculate the approximate bearing capacity of piles. These are based on assumptions, including:
- The resistance to being driven into the soil is determined from the energy delivered by the hammer together with the pile movement when struck by the hammer.
- Resistance to being driven into the soil is equal to the ultimate bearing capacity for static loads.
The basis of the formulae is that the ability to overcome the ground resistance to penetration is equated with the energy delivered by the hammer on impact. A factor of safety must be applied when the ultimate bearing capacity has been achieved, before calculating the safe working load. This can vary according to the pile’s permitted settlement rate at working load, which is determined by the pile size and the soil compressibility.
[edit] Static formulae
For non-cohesive soils, the static formulae that can be used to test piles include the standard penetration test and the cone penetration test.
The standard penetration test involves measuring the soil’s resistance to penetration under static or dynamic loading. For more information, see Standard penetration test.
The cone penetration test involves a cone enclosed in a tube. This is pushed into the soil, and measurements are taken of the forces that are required to independently advance the cone and tube. The resistance of the cone to being driven into the soil is taken as being equal to the ultimate bearing capacity.
Laboratory tests are more suitable for estimating the shear strength values of cohesive soils.
[edit] Test loading
It is advisable to test load at least one pile per scheme by forming a trial pile that is in close proximity but does not form part of the actual foundations. The pile should be overloaded by at least 50% of its working load and held for 24 hours. This provides a check on the ultimate bearing capacity of the pile as well as the workmanship involved in forming the pile.
[edit] Related articles on Designing Buildings Wiki
Featured articles and news
Repairing historic stone and slate roofs
The need for a code of practice and technical advice note.
UKCW London to tackle sector’s most pressing issues
AI and skills development, ecology and the environment, policy and planning and more.
Managing building safety risks
Across an existing residential portfolio; a client's perspective.
ECA support for Gate Safe’s Safe School Gates Campaign.
Core construction skills explained
Preparing for a career in construction.
Retrofitting for resilience with the Leicester Resilience Hub
Community-serving facilities, enhanced as support and essential services for climate-related disruptions.
Some of the articles relating to water, here to browse. Any missing?
Recognisable Gothic characters, designed to dramatically spout water away from buildings.
A case study and a warning to would-be developers
Creating four dwellings... after half a century of doing this job, why, oh why, is it so difficult?
Reform of the fire engineering profession
Fire Engineers Advisory Panel: Authoritative Statement, reactions and next steps.
Restoration and renewal of the Palace of Westminster
A complex project of cultural significance from full decant to EMI, opportunities and a potential a way forward.
Apprenticeships and the responsibility we share
Perspectives from the CIOB President as National Apprentice Week comes to a close.
The first line of defence against rain, wind and snow.
Building Safety recap January, 2026
What we missed at the end of last year, and at the start of this.



















