Shear strength
Shear is a type of stress in which an applied force causes a structure to 'slide' in two or more directions. Shear can cause a structural member to split vertically or diagonally. For example, a cantilever beam built into a wall may shear at the point of support due either to its own weight or the applied forces, or both.
Shear strength is the ability of a material or component to resist shear forces without failing or, put another way, the maximum shear force that can be accommodated before failing.
Shear strength is analogous to ultimate tensile strength (UTS). The difference is that in shear the strain is parallel to the face (or cross-section) of the element in question whereas tensile strain is at right angles.
In structures, knowing the shear strength of materials is critical to be able to design or specify structural components (e.g beams, plates, bolts etc) economically whilst still withstanding shear forces.
In timber, shear strength tends to be affected by the direction of loading in relation to the grain. The shear strength tends to be around 10-15% of its tensile strength (in the direction of the grain). But shear strength will be reduced by the presence of knots, cracks and faults.
Adhesives tend to have high shear strengths. This can be measured by bonding two strips together then pulling them apart under a constant load. Typically, an epoxy resin adhesive can have shear strengths in the region of 26MPa, however, this is an idealised test and in use the shear strength of an adhesive can depend on many variables including surface preparation, conditions and so on.
Bolts can have a critical function in structures, for example, if they are used to connect a steel frame together or fix steel beams to a concrete core. In such instances, bolts may be required to withstand significant shear forces.
Typical shear strengths include:
In soil mechanics, the shear strength of soil is the shear force which can be sustained by the soil. This is dependent on numerous variables such as the friction between particles and the degree of interlock between them, whether they are cemented together or bonded at contact surfaces and so on.
Determining the shear strength of a cohesionless soil can be achieved by using either a direct shear test or a box shear test. Using the direct shear method allows the cohesion and angle of internal friction of soil to be established, which can be useful in the engineering design of elements such as foundations and retaining walls.
The direct shear test can be applied to the following soil conditions:
- Unconsolidated-undrained.
- Consolidated-undrained.
- Consolidated-drained.
See also: Shear.
[edit] Related articles on Designing Buildings Wiki
Featured articles and news
Shading for housing, a design guide
A look back at embedding a new culture of shading.
The Architectural Technology Awards
The AT Awards 2025 are open for entries!
ECA Blueprint for Electrification
The 'mosaic of interconnected challenges' and how to deliver the UK’s Transition to Clean Power.
Grenfell Tower Principal Contractor Award notice
Tower repair and maintenance contractor announced as demolition contractor.
Passivhaus social homes benefit from heat pump service
Sixteen new homes designed and built to achieve Passivhaus constructed in Dumfries & Galloway.
CABE Publishes Results of 2025 Building Control Survey
Concern over lack of understanding of how roles have changed since the introduction of the BSA 2022.
British Architectural Sculpture 1851-1951
A rich heritage of decorative and figurative sculpture. Book review.
A programme to tackle the lack of diversity.
Independent Building Control review panel
Five members of the newly established, Grenfell Tower Inquiry recommended, panel appointed.
Welsh Recharging Electrical Skills Charter progresses
ECA progressing on the ‘asks’ of the Recharging Electrical Skills Charter at the Senedd in Wales.
A brief history from 1890s to 2020s.
CIOB and CORBON combine forces
To elevate professional standards in Nigeria’s construction industry.
Amendment to the GB Energy Bill welcomed by ECA
Move prevents nationally-owned energy company from investing in solar panels produced by modern slavery.
Gregor Harvie argues that AI is state-sanctioned theft of IP.
Experimental AI housing target help for councils
Experimental AI could help councils meet housing targets by digitising records.
BSRIA Occupant Wellbeing survey BOW
Occupant satisfaction and wellbeing tool inc. physical environment, indoor facilities, functionality and accessibility.