Core
Contents |
[edit] Introduction
As materials technology has advanced, and steel and concrete have been able to achieve higher and higher compressive strengths, so the height of skyscrapers has increased to heights that were previously deemed unrealistic.
A skyscraper is essentially a cantilevered steel beam but its rigidity and resistance to lateral and vertical forces is made possible by the core that runs up its entire length. In effect, the core is a hollow tube within a hollow tube, and the structure usually comprises an outer frame and an inner core.
Whether a steel- or concrete-framed building, the core is usually a square or rectangular reinforced concrete tube located inside the building. It comprises concrete walls that will have openings for access and egress and is typically placed centrally in the floor plan with usable space – for apartments, offices etc – arranged around it. But it can also be offset which can give a better use of floor space.
A core serves the following functions:
- Aids the building’s structural stability.
- Provides access and escape e.g via lifts and stairs
- Allows a convenient clustering of services such as toilets, storage and fire services.
- Creates a protected fire compartment.
[edit] Structure
Today’s skyscrapers are usually hybrid structures, comprising an outer relatively light steel frame linked to an internal concrete core. The cladding to the building is usually non-loadbearing. Steel is typically used for the frame as it can be built to higher levels than reinforce concrete. The typical arrangement seen in many of the world’s tall buildings involves an external steel frame and inner concrete core.
The core’s walls are typically called shear walls and achieve a lateral stiffness that is greatly in excess of that of the outer frame. This allows the core to resist the lateral forces arising from wind and earthquakes that can act on buildings. Used in conjunction with an outer steel frame, the core resists the horizontal loads while the lighter steel columns resist the vertical load.
As an alternative to a concrete core, steel-framed buildings may also have steel cores which give the advantage of rapid construction without having to wait for concrete to cure. In such cases, stiffness may be imparted to the steel core by diagonal steel bracing or by prefabricated concrete panels inserted in bay as construction progresses.
Lateral loads are transferred from the outer steel structure to the core through the floor structure, typically comprising long-span beams, their secondary counterparts and concrete slabs or steel decks.
The combination of frame and core shear-wall action allows skyscrapers to resist huge lateral forces while suffering only mild deflection: prior to their destruction, the twin towers of the World Trade Centre in New York would have a top sway (or drift) in the order of around 900mm.
Concrete cores in high-rise buildings can also be stabilised further by the use of outriggers – trusses inserted to brace the core and which may be supported by super tall (or mega) columns. Outriggers can be one or two storeys deep and connect the core to the perimeter columns.
[edit] Alternative definition
Redefining value, The manufacturing revolution, Remanufacturing, refurbishment, repair and direct reuse in the circular economy, published by the United Nations Environment Programme in 2018, suggests core is a : ‘…previously sold, worn or non-functional product or module, intended for the remanufacturing process. During reverse-logistics, a core is protected, handled and identified for remanufacturing to avoid damage and to preserve its value. A core is usually not waste or scrap, and it is not intended to be reused for other purposes before comprehensive refurbishment or remanufacturing takes place.’
[edit] Related articles on Designing Buildings
- 7 Engineering Wonders of the World.
- Advantages of shell and core.
- Base construction.
- Building height.
- Building regulations.
- Comprehensive refurbishment.
- Groundscraper.
- Low-rise building.
- Megastructure.
- Megatall.
- Multi-storey structure.
- Outrigger.
- Practical completion.
- Rent free period.
- Secondary ventilation stacks in tall buildings.
- Shear wall.
- Skeleton frame.
- Skyscraper.
- Storey.
- Structural systems for offices.
- Super-slender.
- Supertall.
- Tall building.
- Tallest buildings in the world.
- The Mile.
- Top 10 skyscrapers located in the UAE.
- Tower.
Featured articles and news
Deputy editor of AT, Tim Fraser, discusses the newly formed society with its current chair, Chris Halligan MCIAT.
Barratt Lo-E passivhaus standard homes planned enmasse
With an initial 728 Lo-E homes across two sites and many more planned for the future.
Government urged to uphold Warm Homes commitment
ECA and industry bodies write to Government concerning its 13.2 billion Warm Homes manifesto commitment.
Places of Worship in Britain and Ireland, 1929-1990. Book review.
The emancipation of women in art.
CIOB Construction Manager of the Year 2025
Just one of the winners at the CIOB Awards 2025.
Call for independent National Grenfell oversight mechanism
MHCLG share findings of Building Safety Inquiry in letter to Secretary of State and Minister for Building Safety.
The Architectural Technology Awards
AT Awards now open for this the sixth decade of CIAT.
50th Golden anniversary ECA Edmundson awards
Deadline for submissions Friday 30 May 2025.
The benefits of precast, off-site foundation systems
Top ten benefits of this notable innovation.
Encouraging individuals to take action saving water at home, work, and in their communities.
Takes a community to support mental health and wellbeing
The why of becoming a Mental Health Instructor explained.
Mental health awareness week 13-18 May
The theme is communities, they can provide a sense of belonging, safety, support in hard times, and a sense purpose.
Mental health support on the rise but workers still struggling
CIOB Understanding Mental Health in the Built Environment 2025 shows.
Design and construction material libraries
Material, sample, product or detail libraries a key component of any architectural design practice.
Construction Products Reform Green Paper and Consultation
Still time to respond as consultation closes on 21 May 2025.
Resilient façade systems for smog reduction in Shanghai
A technical approach using computer simulation and analysis of solar radiation, wind patterns, and ventilation.