Outrigger
Contents |
[edit] Introduction
Originally a nautical phenomenon, outriggers have been used for millennia as extended floats attached to canoes to provide stability and so avoid overturning. The same principle has been used since the 1950s in construction to provide lateral stability to tall, narrow buildings.
[edit] Structural component
Outriggers are typically horizontal structures (usually trusses or reinforced concrete walls) inserted into buildings at various levels to tie the concrete core to the outer (or perimeter) structural framework. They can be tied to the core and combined with exterior columns, or may be connected to a super- or mega-column.
Outriggers add strength and stiffness to a structure that is far in excess of what may be available at specific locations throughout the building’s height. There is no one-size fits all and so the design of outriggers will usually be unique to suit the specific application.
The structural efficacy of outriggers will depend on their distribution through the building’s height, the number of outrigger levels, their configuration on plan, the depth of the outrigger truss or wall, the materials used and other considerations. But the effect of constructing an outrigger and thereby connecting the core with perimeter columns creates a unified lateral load-resisting system that can reduce the overturning moment at the core by up 40% to 60% in tall and super-tall buildings respectively.
Tall or slender buildings, such as 432 Park Avenue, New York, or 22 Bishopsgate, London, will often feature a core and outrigger system to resist lateral loads. In such cases, the overturning moment is large compared to the shear, and the flexural deformations of the building contribute greatly to lateral deflection e.g drift. Outriggers provide increased stiffness and so can reduce building drift (the sway experienced at the top of very tall buildings), thereby reducing the building accelerations during strong winds which might otherwise cause discomfort to occupants.
[edit] Benefits of outriggers
- Reduce overturning moments and building drift.
- By decreasing building overturning moment, provide more economic use of materials required to construct the core.
- Reduce forces in the core’s foundations to provide further economy.
- Used at different levels, outriggers can allow the creation of service floors for plant etc.
NB Outriggers may also be used to stabilise construction plant, such as mobile cranes, which might otherwise overturn.
[edit] Related articles on Designing Buildings Wiki
- Advantages of shell and core.
- Base construction.
- Building height.
- Building regulations.
- Client commissioning.
- Commissioning v testing.
- Commissioning.
- Core.
- Fire risk in high-rise and super high-rise buildings DG 533.
- Fit out.
- Groundscraper.
- Megastructure.
- Megatall.
- Multi-storey structure.
- Multi-storey structure.
- Practical completion.
- Rent free period.
- Secondary ventilation stacks in tall buildings.
- Set to work.
- Shear wall.
- Skeleton frame.
- Skyscraper.
- Storey.
- Structural systems for offices.
- Super-slender.
- Supertall.
- Tall building.
- Tallest buildings in the world.
- The Mile.
- Top 10 skyscrapers located in the UAE.
- Tower.
- Types of building.
Featured articles and news
Guidance notes to prepare for April ERA changes
From the Electrical Contractors' Association Employee Relations team.
Significant changes to be seen from the new ERA in 2026 and 2027, starting on 6 April 2026.
First aid in the modern workplace with St John Ambulance.
Ireland's National Residential Retrofit Plan
Staged initiatives introduced step by step.
Solar panels, pitched roofs and risk of fire spread
60% increase in solar panel fires prompts tests and installation warnings.
Modernising heat networks with Heat interface unit
Why HIUs hold the key to efficiency upgrades.
Reflecting on the work of the CIOB Academy
Looking back on 2025 and where it's going next.
Procurement in construction: Knowledge hub
Brief, overview, key articles and over 1000 more covering procurement.
Sir John Betjeman’s love of Victorian church architecture.
Exchange for Change for UK deposit return scheme
The UK Deposit Management Organisation established to deliver Deposit Return Scheme unveils trading name.
A guide to integrating heat pumps
As the Future Homes Standard approaches Future Homes Hub publishes hints and tips for Architects and Architectural Technologists.
BSR as a standalone body; statements, key roles, context
Statements from key figures in key and changing roles.
ECA launches Welsh Election Manifesto
ECA calls on political parties at 100 day milestone to the Senedd elections.
Resident engagement as the key to successful retrofits
Retrofit is about people, not just buildings, from early starts to beyond handover.
Plastic, recycling and its symbol
Student competition winning, M.C.Esher inspired Möbius strip design symbolising continuity within a finite entity.
Do you take the lead in a circular construction economy?
Help us develop and expand this wiki as a resource for academia and industry alike.
Warm Homes Plan Workforce Taskforce
Risks of undermining UK’s energy transition due to lack of electrotechnical industry representation, says ECA.
Cost Optimal Domestic Electrification CODE
Modelling retrofits only on costs that directly impact the consumer: upfront cost of equipment, energy costs and maintenance costs.























