Deflection
[edit] Introduction
Deflection – in engineering terms – is the degree to which an element of structure changes shape when a load is applied. The change may be a distance or an angle and can be either visible or invisible, depending on the load intensity, the shape of the component and the material from which it is made.
Deflection is a crucial consideration in the design of a structure and failure to apply due attention to it can be catastrophic.
Different types of load can cause deflections. These include point loads, uniformly distributed loads, wind loads, shear loads as well as ground pressure and earthquakes, to name but a few. When a load produces a deflection that is too great, the component may fail.
Components and structures that suffer deflection include, beams, columns, floors, walls, bridge decks, tunnel walls, dams and so on. San Francisco’s Golden Gate Bridge can sway by as much as 4m laterally under strong winds.
Non-structural components can also deflect, for example cladding panels on a building may deflect inwards when subject to intense wind loading.
Given the possibility of structural failure, building codes usually determine what the maximum allowable deflection should be to ensure the safety of a building’s users and overall structural integrity. For a beam, this is usually expressed as a fraction of the span, eg the beam’s deflection should not be greater than 1/360th of the span; so, if the span is 5m, the deflection should not be greater than 13.9mm. This will usually be measured at the mid-point of the beam.
A structural element will deflect less under load if its stiffness or rigidity is increased. This can usually be achieved by strengthening its section or increasing its size; the latter may also increase its cost.
The material itself must also be considered. For example, because aluminium is around three times more flexible than steel, it is often designed for deflection rather than strength. In contrast, glass is relatively inflexible: even slight deflections in a steel frame could cause the glass to fracture.
[edit] Related articles on Designing Buildings Wiki
- Approved Document A.
- Concept structural design of buildings.
- Elements of structure in buildings
- Institution of Structural Engineers IStructE.
- Span.
- Structural principles.
- Structures at the end of their design life.
- Substructure.
- Superstructure.
- The development of structural membranes.
- Tower.
- Types of structure.
Featured articles and news
Industry Competence Steering Group restructure
ICSG transitions to the Industry Competence Committee (ICC) under the Building Safety Regulator (BSR).
Principal Contractor Competency Certification Scheme
CIOB PCCCS competence framework for Principal Contractors.
The CIAT Principal Designer register
Issues explained via a series of FAQs.
Conservation in the age of the fourth (digital) industrial revolution.
Shaping the future of heritage
Embracing the evolution of economic thinking.
Ministers to unleash biggest building boom in half a century
50 major infrastructure projects, 5 billion for housing and 1.5 million homes.
RIBA Principal Designer Practice Note published
With key descriptions, best practice examples and FAQs, with supporting template resources.
Electrical businesses brace for project delays in 2025
BEB survey reveals over half worried about impact of delays.
Accelerating the remediation of buildings with unsafe cladding in England
The government publishes its Remediation Acceleration Plan.
Airtightness in raised access plenum floors
New testing guidance from BSRIA out now.
Picking up the hard hat on site or not
Common factors preventing workers using head protection and how to solve them.
Building trust with customers through endorsed trades
Commitment to quality demonstrated through government endorsed scheme.
New guidance for preparing structural submissions for Gateways 2 and 3
Published by the The Institution of Structural Engineers.
CIOB launches global mental health survey
To address the silent mental health crisis in construction.
New categories in sustainability, health and safety, and emerging talent.
Key takeaways from the BSRIA Briefing 2024
Not just waiting for Net Zero, but driving it.