Creep
Creep is a term used in materials science and civil and mechanical engineering. It describes the time-dependent behaviour of a solid which, when subjected to continuous stress deforms permanently below its yield point (the limit of elastic behaviour after which loads applied will cause permanent deformation.) The failure mechanism is known as creep failure, material creep or stress rupture. The rate at which it occurs is called the creep rate.
Creep can occur in metals, plastics, rubber, glass and concrete. Copper, iron, nickel and their alloys will exhibit creep at high temperatures. When a constant force is applied, some materials deform gradually with time and the result is an increase in length. In a turbine blade, the length increase resulting from creep can cause the blade to touch the casing causing failure of the blade. In service, creep typically results from shifting conditions of temperature and loading. It will be greater when materials are subject to heat that is close to their melting point.
Although creep generally occurs at high temperatures (thermal creep), it can also occur slowly at lower temperatures in materials such as lead, zinc and glass. The ‘oil canning’ which sometimes develops on some thin-sheet zinc cladding is a result of creep over time. Some creep can also occur in the interlayers of laminated glass.
When a concrete structure is under sustained load, the applied long-term pressure causes deformation usually in the direction of the applied force – so beams suffer greater deflection and columns can buckle if eccentrically loaded. A member may not fail or break, but the elastic strain could, if the load is sustained, develop into creep strain. The scale of creep will depend on many factors including the severity of the applied stress, the strength and age of the concrete, the properties of the aggregate, the amount of steel reinforcement, and other factors. Unlike metals, creep in concrete takes place at all levels of stress.
See also: Scope creep.
[edit] Related articles on Designing Buildings Wiki
Featured articles and news
Boiler Upgrade Scheme and certifications consultation
Summary of government consultation which closes 11 June 2025.
Deputy editor of AT, Tim Fraser, discusses the newly formed society with its current chair, Chris Halligan MCIAT.
Barratt Lo-E passivhaus standard homes planned enmasse
With an initial 728 Lo-E homes across two sites and many more planned for the future.
Government urged to uphold Warm Homes commitment
ECA and industry bodies write to Government concerning its 13.2 billion Warm Homes manifesto commitment.
Places of Worship in Britain and Ireland, 1929-1990. Book review.
The emancipation of women in art.
CIOB Construction Manager of the Year 2025
Just one of the winners at the CIOB Awards 2025.
Call for independent National Grenfell oversight mechanism
MHCLG share findings of Building Safety Inquiry in letter to Secretary of State and Minister for Building Safety.
The Architectural Technology Awards
AT Awards now open for this the sixth decade of CIAT.
50th Golden anniversary ECA Edmundson awards
Deadline for submissions Friday 30 May 2025.
The benefits of precast, off-site foundation systems
Top ten benefits of this notable innovation.
Encouraging individuals to take action saving water at home, work, and in their communities.
Takes a community to support mental health and wellbeing
The why of becoming a Mental Health Instructor explained.
Mental health awareness week 13-18 May
The theme is communities, they can provide a sense of belonging, safety, support in hard times, and a sense purpose.
Mental health support on the rise but workers still struggling
CIOB Understanding Mental Health in the Built Environment 2025 shows.
Design and construction material libraries
Material, sample, product or detail libraries a key component of any architectural design practice.
Construction Products Reform Green Paper and Consultation
Still time to respond as consultation closes on 21 May 2025.
Resilient façade systems for smog reduction in Shanghai
A technical approach using computer simulation and analysis of solar radiation, wind patterns, and ventilation.