Forensic investigations: can we trust them?
![]() |
A detailed forensic investigation of this collapsed reinforced earth wall under construction in Hong Kong found insufficient site drainage was the main cause. |
Contents |
[edit] Introduction
Forensic engineers aim to identify the causes of failure of constructed facilities. The results are often used in legal proceedings, so sound investigations and reporting are essential because they can result in severe consequences and penalties.
Other investigations aim to learn from the failures and improve practices. These investigations may lead to changes in company approaches or even in legislation. Reliable investigations are necessary in these situations, too, because erroneous conclusions might lead to insufficient measures.
The reliability of both types of investigations is therefore of utmost importance. Every phase of an investigation needs attention. This is the reason why ICE published a themed issue of its Forensic Engineering journal on the reliability of forensic investigations.
[edit] Quality assurance issues
When gathering facts after a failure, it is often not clear which facts are needed to find the causes.
How do you decide where to focus? Furthermore, when setting possible scenarios, this procedure is often limited by the scope of the client’s brief. What if you are not paid to look for possible scenarios that do not support the client’s interest?
Finally, when testing scenarios, what do you do with facts that do not match your most evident scenario? In short, what do you do to assure the quality of the investigation and reliability of the result?
Researchers with practical forensic experience from various faculties of Delft University of Technology tried to answer these questions by developing an integrated forensic investigation approach. They based their approach on established theories from the literature and also from human sciences.
Furthermore, they used best practices from forensic investigations in aerospace engineering, civil engineering and biomechanical engineering, with the aim to increase reliability of investigations.
[edit] Understanding human error
Professor Dekker, author of the very inspirational 2014 book ‘The Field Guide to Understanding ‘Human Error’’, was willing to contribute with an overview of possible biases to determine human influence in technical failures.
As over 90% of structural failures are attributed to human errors, it is important to understand better the reason people were acting as they did prior to a failure.
For many forensic investigations, instruments are used to provide information to determine the cause of a failure. Thorniley-Walker et al shared their experience in investigating settlement damage and they show that relatively simple movement gauges can provide reliable and useful information.
[edit] The importance of experience
To become a mature forensic engineer, it is important to gain experience. The themed issue also provides some examples of interesting case studies related to, especially, geotechnical structures, that can help readers to learn from the experience of other investigators.
Kog provides an overview of common causes for water leakages of underground structures. For design engineers, this paper provides useful lessons in avoiding or minimising these leakages in new designs.
Ashok Kumar et al describe a case study of an industrial building constructed on expansive soil in India. They stress that this type of failure results in billions of dollars’ worth of damage worldwide, and therefore a thorough understanding of this phenomenon is important.
A forensic investigation of these cracks in a four-year old industrial building in India found among other things that the rainwater harvesting system was leaking into the underlying expansive clay.
Finally, a large failure of a reinforced earth wall in Hong Kong has been thoroughly examined and nicely reported.
The described steps in the investigation, testing – also with an unmanned vehicle because of a dangerous situation – and careful examining of possible causes provide an example of what a thorough investigation could look like.
[edit] About this article
This article was written by Karel Terwel of Delft University of Technology, Holland. It appeared on the website of the Institution of Civil Engineers (ICE) in March 2019 and can be accessed here.
[edit] Related articles on Designing Buildings Wiki
Featured articles and news
BG 50 & VDI 2035 – your questions answered.
Types of domestic heating systems.
Will the way we heat homes change when winter comes ?
Extended reality in a post-pandemic world.
Can XR technology be leveraged in design & construction?
Or are you capping.
STEM ambassadors needed for ICE CityZen award.
Digital gaming competition for UK students aged 16 to 18.
Heritage protection in England vs Australia.
Fire doors and the Fire Door Inspection Scheme.
Three-quarters of fire doors fail inspections
UN International Day for Biological Diversity, May 22.
The role of geoparks, biospheres and world heritage sites.
BSRIA conference 2022, June 23.
Just one month to go ! Find out more here.
Restoring Broadbent’s Bath House
A new gallery for the University of Huddersfield.
Corruption in the construction industry.
What will it take to stop it ?
To celebrate world bee day 2022 !
Just one month until the changes to part L come into effect.
Not forgetting part F and the new part overheating part O.
Heat Pump demand rises by one quarter.
As energy prices jump up in cost.
With people in the UK from Ukraine.
Industry leader Steve Murray takes on role.
An abundant and versatile building material.
How overheating complicates ending gas in the UK.
600,000 heat pump installations targeted per year by 2028.
Cost planning, control and related articles on DB.
Helping prevent those unwanted outcomes.
ICE debate Public transport - post pandemic.
How has transport changed due to Covid-19 ?
Cross-ventilation in buildings. Do you have it ?
Will you need it ? after June 15 and the new Part O ?