Span
[edit] Introduction
In structural engineering and architecture, ‘span’ is the term given to the length of a structural component – eg beam, floor, roof or floor truss – that extends (or ‘spans’) between two supports. Thus, a beam may be supported at either end, in which case it is said to span between the two points, and a floor may span between two (or three or even four) continuous supports.
A general engineering principle is the longer the span, the deeper the structural component will have to be to safely support its self-weight and whatever it must carry, eg a floor.
[edit] Span-to-depth (STD) ratio
Span-to-depth ratio (or span/depth ratio, also known as slenderness ratio L/h) is the ratio of the span length divided by the depth (or vertical height) of a component. It is an important parameter as it can affect structural behaviour, construction costs and aesthetics.
A 250mm-deep beam that spans 4m has a span/depth ratio of 16. If the span/depth ratio is less than two, the beam is considered to be ‘deep’. Eurocode 2 gives span/depth rules for designing reinforced concrete beams and slabs.
More dramatic span/depth ratios can be provided by space frames: a rectangular space frame may have a span/depth ratio of up to 40, while this can be as high as 60 for a skew space frame.
Span/depth ratios are useful in limiting the deflection of a member under service loads. Damage may result if limits are exceeded, eg cracking of plaster, partitions and supporting brickwork. If limits are exceeded wildly, catastrophic structural failure accompanied by potential loss of life may result.
In bridge design, span/depth ratio is an important parameter. The ratio relates the length of the bridge’s span to its girder depth. To ensure that design does not deviate substantially from past successful practice, the ratio is commonly chosen on the basis of experience and the typical values used on past bridges. A typical starting point for estimating bridge construction depths is to take an STD ratio of 20.
[edit] Related articles on Designing Buildings Wiki
Featured articles and news
Myths and top tips.
CLC plans to ease impact of construction inflation.
BG 50 & VDI 2035 – your questions answered.
Types of domestic heating systems.
Will the way we heat homes change when winter comes ?
Extended reality in a post-pandemic world.
Can XR technology be leveraged in design & construction?
Or are you capping.
STEM ambassadors needed for ICE CityZen award.
Digital gaming competition for UK students aged 16 to 18.
Heritage protection in England vs Australia.
Fire doors and the Fire Door Inspection Scheme.
Three-quarters of fire doors fail inspections
UN International Day for Biological Diversity, May 22.
The role of geoparks, biospheres and world heritage sites.
BSRIA conference 2022, June 23.
Just one month to go ! Find out more here.
Restoring Broadbent’s Bath House
A new gallery for the University of Huddersfield.
Corruption in the construction industry.
What will it take to stop it ?
To celebrate world bee day 2022 !
Just one month until the changes to part L come into effect.
Not forgetting part F and the new part overheating part O.
Heat Pump demand rises by one quarter.
As energy prices jump up in cost.
With people in the UK from Ukraine.
Industry leader Steve Murray takes on role.
An abundant and versatile building material.
How overheating complicates ending gas in the UK.
600,000 heat pump installations targeted per year by 2028.
Cost planning, control and related articles on DB.
Helping prevent those unwanted outcomes.