Span
[edit] Introduction
In structural engineering and architecture, ‘span’ is the term given to the length of a structural component – eg beam, floor, roof or floor truss – that extends (or ‘spans’) between two supports. Thus, a beam may be supported at either end, in which case it is said to span between the two points, and a floor may span between two (or three or even four) continuous supports.
A general engineering principle is the longer the span, the deeper the structural component will have to be to safely support its self-weight and whatever it must carry, eg a floor.
[edit] Span-to-depth (STD) ratio
Span-to-depth ratio (or span/depth ratio, also known as slenderness ratio L/h) is the ratio of the span length divided by the depth (or vertical height) of a component. It is an important parameter as it can affect structural behaviour, construction costs and aesthetics.
A 250mm-deep beam that spans 4m has a span/depth ratio of 16. If the span/depth ratio is less than two, the beam is considered to be ‘deep’. Eurocode 2 gives span/depth rules for designing reinforced concrete beams and slabs.
More dramatic span/depth ratios can be provided by space frames: a rectangular space frame may have a span/depth ratio of up to 40, while this can be as high as 60 for a skew space frame.
Span/depth ratios are useful in limiting the deflection of a member under service loads. Damage may result if limits are exceeded, eg cracking of plaster, partitions and supporting brickwork. If limits are exceeded wildly, catastrophic structural failure accompanied by potential loss of life may result.
In bridge design, span/depth ratio is an important parameter. The ratio relates the length of the bridge’s span to its girder depth. To ensure that design does not deviate substantially from past successful practice, the ratio is commonly chosen on the basis of experience and the typical values used on past bridges. A typical starting point for estimating bridge construction depths is to take an STD ratio of 20.
[edit] Related articles on Designing Buildings Wiki
Featured articles and news
Top tips and risks to look out for.
Retrofit of Buildings, a CIOB Technical Publication
Pertinent technical issues, retrofit measures and the roles involved.
New alliance will tackle skills shortage in greater Manchester
The pioneering Electrotechnical Training and Careers Alliance.
Drone data at the edge: three steps to better AI insights
Offering greater accuracy and quicker access to insights.
From fit-out to higher-risk buildings.
Heritage conservation in Calgary
The triple bottom line.
College of West Anglia apprentice wins SkillELECTRIC gold.
Scottish government launch delivery plan
To strengthen planning and tackle the housing emergency.
How people react in ways which tend to restore their comfort.
Comfort is a crucial missing piece of the puzzle.
ECA launches Recharging Electrical Skills Charter in Wales
Best solutions for the industry and electrical skills in Wales.
New homebuilding skills hub launch and industry response
Working with CITB and NHBC to launch fast track training.
Building Peoples Network of Networks
Amplifying voices and giving support to people from diverse and under-represented groups in construction.
Experiences of discrimination and sexual misconduct rife
Reveals ARB research into architectual workplace culture.
About the 5 Percent Club and its members
The 5% Club; a dynamic movement of employers committed to building and developing the workforce.
Comments
[edit] To make a comment about this article, click 'Add a comment' above. Separate your comments from any existing comments by inserting a horizontal line.