Structural engineer
Structural engineers design, assess and inspect structures to ensure they are efficient and stable. Structural engineering was traditionally considered a sub-discipline of civil engineering, however, it has developed as an important and complex specialism and is now recognised as an engineering discipline in its own right.
For more information see: Civil engineer.
Structural engineers work on a very wide range of projects, including buildings, infrastructure and other structures. It is both a technical and creative role that involves close collaboration with professionals from other disciplines.
The scope of services provided by a structural engineer might include:
- Site appraisals and surveys.
- Geotechnical and geological investigations.
- The preparation of briefing documents, feasibility studies and options appraisals.
- The preparation of tender documentation and the assessment of tenders.
- Assessment and integration of work by specialists.
- Environmental studies.
- Material investigations.
- Ground improvement studies.
- The structural design and detailing of foundations, retaining walls buildings, roads, bridges and so on.
- Assessment of special loads.
- Fire protection of structures.
- Demolition assessment and design.
- Building regulations submissions.
- Risk assessment.
- Value management.
- On-site inspection and testing.
- Defect assessments the the development of remediation solutions.
- Expert witness testimony for courts and insurance purposes.
Structural failure can be devastating. It is important therefore to select an individual or company that has a good track record and experience in structurally similar projects. Suitably qualified professionals will generally be Chartered or Incorporated Engineers who are members of the Institution of Civil Engineers and/or the Institution of Structural Engineers.
Members of such institutes will generally be required to maintain their professional competence through an ongoing programme of continued professional development (cpd), to hold professional indemnity insurance and to comply with a code of practice.
It is good practice to employ a structural engineer based on their capability, competence and quality rather than simply by the lowest fee. A good design that explores a wide variety of options to find the best solution can save significant costs over the life of a building.
John Nolan, Institution of Structural Engineers President 2012 said in his Presidential Address; "One thing I am particularly proud of from that time is the contribution we made in value engineering the now ubiquitous McDonald’s 'drive-thru' down to a third of the cost and a third of the construction time of the traditionally built design. We did this by standardising the design to a structure that could be factory engineered and fitted out, transported to site in x6 3m by 12m modules and founded on prefabricated foundations. This concept has since saved hundreds of millions of pounds worldwide." This concept is in use now by the structural engineers.
To see some of the modules studied as part of an engineering course, see Construction engineering management course essentials.
[edit] Related articles on Designing Buildings
- Appointing consultants.
- Architect.
- Building information modelling.
- Civil engineer.
- Civil engineering dream projects.
- Collaborative practices.
- Concept structural design.
- Consultancy.
- Consultant team.
- Consultant team start-up meeting.
- Dead loads.
- Designers.
- Detailed design.
- Detailed structural design.
- Earthquake Design Practice for Buildings.
- Engineer.
- Engineering Council.
- Engineering the World - VandA Museum.
- Geotechnical engineering.
- Institution of Structural Engineers.
- Lead consultant.
- Lead designer.
- Limit state design.
- Live loads.
- Mixed news from the Perkins Review.
- Professional indemnity insurance.
- Scour.
- Section engineer.
- Services engineer.
- Specialist designers.
- Structural engineering codes.
- Structural principles.
- Structural steelwork.
- Structure definition.
- Surfside condo collapse: climate change demands adaptation in design and approach.
- Types of structural load.
- Types of structure.
[edit] External references
Featured articles and news
Deputy editor of AT, Tim Fraser, discusses the newly formed society with its current chair, Chris Halligan MCIAT.
Barratt Lo-E passivhaus standard homes planned enmasse
With an initial 728 Lo-E homes across two sites and many more planned for the future.
Government urged to uphold Warm Homes commitment
ECA and industry bodies write to Government concerning its 13.2 billion Warm Homes manifesto commitment.
Places of Worship in Britain and Ireland, 1929-1990. Book review.
The emancipation of women in art.
CIOB Construction Manager of the Year 2025
Just one of the winners at the CIOB Awards 2025.
Call for independent National Grenfell oversight mechanism
MHCLG share findings of Building Safety Inquiry in letter to Secretary of State and Minister for Building Safety.
The Architectural Technology Awards
AT Awards now open for this the sixth decade of CIAT.
50th Golden anniversary ECA Edmundson awards
Deadline for submissions Friday 30 May 2025.
The benefits of precast, off-site foundation systems
Top ten benefits of this notable innovation.
Encouraging individuals to take action saving water at home, work, and in their communities.
Takes a community to support mental health and wellbeing
The why of becoming a Mental Health Instructor explained.
Mental health awareness week 13-18 May
The theme is communities, they can provide a sense of belonging, safety, support in hard times, and a sense purpose.
Mental health support on the rise but workers still struggling
CIOB Understanding Mental Health in the Built Environment 2025 shows.
Design and construction material libraries
Material, sample, product or detail libraries a key component of any architectural design practice.
Construction Products Reform Green Paper and Consultation
Still time to respond as consultation closes on 21 May 2025.
Resilient façade systems for smog reduction in Shanghai
A technical approach using computer simulation and analysis of solar radiation, wind patterns, and ventilation.
Comments
Best civil design training institute