Structural engineer
Structural engineers design, assess and inspect structures to ensure they are efficient and stable. Structural engineering was traditionally considered a sub-discipline of civil engineering, however, it has developed as an important and complex specialism and is now recognised as an engineering discipline in its own right.
For more information see: Civil engineer.
Structural engineers work on a very wide range of projects, including buildings, infrastructure and other structures. It is both a technical and creative role that involves close collaboration with professionals from other disciplines.
The scope of services provided by a structural engineer might include:
- Site appraisals and surveys.
- Geotechnical and geological investigations.
- The preparation of briefing documents, feasibility studies and options appraisals.
- The preparation of tender documentation and the assessment of tenders.
- Assessment and integration of work by specialists.
- Environmental studies.
- Material investigations.
- Ground improvement studies.
- The structural design and detailing of foundations, retaining walls buildings, roads, bridges and so on.
- Assessment of special loads.
- Fire protection of structures.
- Demolition assessment and design.
- Building regulations submissions.
- Risk assessment.
- Value management.
- On-site inspection and testing.
- Defect assessments the the development of remediation solutions.
- Expert witness testimony for courts and insurance purposes.
Structural failure can be devastating. It is important therefore to select an individual or company that has a good track record and experience in structurally similar projects. Suitably qualified professionals will generally be Chartered or Incorporated Engineers who are members of the Institution of Civil Engineers and/or the Institution of Structural Engineers.
Members of such institutes will generally be required to maintain their professional competence through an ongoing programme of continued professional development (cpd), to hold professional indemnity insurance and to comply with a code of practice.
It is good practice to employ a structural engineer based on their capability, competence and quality rather than simply by the lowest fee. A good design that explores a wide variety of options to find the best solution can save significant costs over the life of a building.
John Nolan, Institution of Structural Engineers President 2012 said in his Presidential Address; "One thing I am particularly proud of from that time is the contribution we made in value engineering the now ubiquitous McDonald’s 'drive-thru' down to a third of the cost and a third of the construction time of the traditionally built design. We did this by standardising the design to a structure that could be factory engineered and fitted out, transported to site in x6 3m by 12m modules and founded on prefabricated foundations. This concept has since saved hundreds of millions of pounds worldwide." This concept is in use now by the structural engineers.
To see some of the modules studied as part of an engineering course, see Construction engineering management course essentials.
[edit] Related articles on Designing Buildings
- Appointing consultants.
- Architect.
- Building information modelling.
- Civil engineer.
- Civil engineering dream projects.
- Collaborative practices.
- Concept structural design.
- Consultancy.
- Consultant team.
- Consultant team start-up meeting.
- Dead loads.
- Designers.
- Detailed design.
- Detailed structural design.
- Earthquake Design Practice for Buildings.
- Engineer.
- Engineering Council.
- Engineering the World - VandA Museum.
- Geotechnical engineering.
- Institution of Structural Engineers.
- Lead consultant.
- Lead designer.
- Limit state design.
- Live loads.
- Mixed news from the Perkins Review.
- Professional indemnity insurance.
- Scour.
- Section engineer.
- Services engineer.
- Specialist designers.
- Structural engineering codes.
- Structural principles.
- Structural steelwork.
- Structure definition.
- Surfside condo collapse: climate change demands adaptation in design and approach.
- Types of structural load.
- Types of structure.
[edit] External references
Featured articles and news
Apprenticeships and the responsibility we share
Perspectives from the CIOB President as National Apprentice Week comes to a close.
The first line of defence against rain, wind and snow.
Building Safety recap January, 2026
What we missed at the end of last year, and at the start of this...
National Apprenticeship Week 2026, 9-15 Feb
Shining a light on the positive impacts for businesses, their apprentices and the wider economy alike.
Applications and benefits of acoustic flooring
From commercial to retail.
From solid to sprung and ribbed to raised.
Strengthening industry collaboration in Hong Kong
Hong Kong Institute of Construction and The Chartered Institute of Building sign Memorandum of Understanding.
A detailed description from the experts at Cornish Lime.
IHBC planning for growth with corporate plan development
Grow with the Institute by volunteering and CP25 consultation.
Connecting ambition and action for designers and specifiers.
Electrical skills gap deepens as apprenticeship starts fall despite surging demand says ECA.
Built environment bodies deepen joint action on EDI
B.E.Inclusive initiative agree next phase of joint equity, diversity and inclusion (EDI) action plan.
Recognising culture as key to sustainable economic growth
Creative UK Provocation paper: Culture as Growth Infrastructure.
Futurebuild and UK Construction Week London Unite
Creating the UK’s Built Environment Super Event and over 25 other key partnerships.
Welsh and Scottish 2026 elections
Manifestos for the built environment for upcoming same May day elections.
Advancing BIM education with a competency framework
“We don’t need people who can just draw in 3D. We need people who can think in data.”























Comments
Best civil design training institute