Dead loads
There are a number of different types of load that can act upon a structure, the nature of which will vary according to design, location, and so on. Design requirements are generally specified in terms of the maximum loads that a structure must be able to withstand.
Loads are generally classified as either dead loads (DL) or live loads (LL).
- Dead loads, also known as permanent or static loads, are those that remain relatively constant over time and comprise, for example, the weight of a building’s structural elements, such as beams, walls, roof and structural flooring components. Dead loads may also include permanent non-structural partitions, immovable fixtures and even built-in cupboards.
- Live loads (applied or imposed loads) may vary over time. Typical live loads might include the weight of the audience in an auditorium, the books in a library, traffic loads and so on.
Dead loads comprise the weight of the structure or other fixed elements before any live loads are taken into consideration. Live loads are added to the dead load to give the total loading exerted on the structure.
Assessing dead loads forms part of an engineer’s structural calculations – a crucial part of ensuring the safe design of building structures and other built assets such as tunnels, bridges and dams.
Dead loads can be calculated by assessing the weights of materials specified and their volume as shown on drawings. This means that in theory, it should be possible to calculate dead loads with a good degree of accuracy. However, structural engineers are sometimes conservative with their estimates, minimising acceptable deflections, allowing a margin of error and allowing for alterations over time, and so design dead loads often far exceed those experienced in practice.
NB The Scottish Building Standards, Part I. Technical Handbook – Domestic, Appendix A Defined Terms, defines dead load as: ‘…the load due to the weight of all walls, permanent partitions, floors, roofs and finishes, including services and other permanent construction and fittings.’
[edit] Related articles on Designing Buildings
Featured articles and news
A detailed description fron the experts at Cornish Lime.
IHBC planning for growth with corporate plan development
Grow with the Institute by volunteering and CP25 consultation.
Connecting ambition and action for designers and specifiers.
Electrical skills gap deepens as apprenticeship starts fall despite surging demand says ECA.
Built environment bodies deepen joint action on EDI
B.E.Inclusive initiative agree next phase of joint equity, diversity and inclusion (EDI) action plan.
Recognising culture as key to sustainable economic growth
Creative UK Provocation paper: Culture as Growth Infrastructure.
Futurebuild and UK Construction Week London Unite
Creating the UK’s Built Environment Super Event and over 25 other key partnerships.
Welsh and Scottish 2026 elections
Manifestos for the built environment for upcoming same May day elections.
Advancing BIM education with a competency framework
“We don’t need people who can just draw in 3D. We need people who can think in data.”
Guidance notes to prepare for April ERA changes
From the Electrical Contractors' Association Employee Relations team.
Significant changes to be seen from the new ERA in 2026 and 2027, starting on 6 April 2026.
First aid in the modern workplace with St John Ambulance.
Solar panels, pitched roofs and risk of fire spread
60% increase in solar panel fires prompts tests and installation warnings.
Modernising heat networks with Heat interface unit
Why HIUs hold the key to efficiency upgrades.



















