Loadbearing capacity
In construction, a loadbearing element (sometimes called a ‘bearing’ element), such as a structural wall, is an active structural part of a building. Typically, it carries and transfers dead or imposed loads down into the foundations. Loadbearing walls are often constructed from high strength materials such as brick, block or concrete.
Loadbearing capacity is the maximum ability of a structural member or material to take loading before failure occurs. For example, before the onset of unacceptable bending.
The opposite of a loadbearing structural member is one that is non-loadbearing and which only carries its own weight, such as a non-loadbearing partition. Typically, these elements can be removed or repositioned relatively easily since they carry no loads and so will not affect the stability of a structure. However, some elements that are generally considered to be non-loadbearing, such as cladding panels, may be affected by dynamic loads, such as wind loading which can cause deflection or suction failure.
In loadbearing construction, applied loads (dead, imposed and dynamic) are distributed in a variety of ways, including through walls, columns, beams, slabs etc. The builders of the large Gothic cathedrals invented a novel way to increase the loadbearing capacity of the external walls which may otherwise have been pushed outwards by the enormous lateral forces exerted on them by the roof vaults. The problem was solved by the addition of flying buttresses which relieved the loads from the external walls and conveyed forces from the roof into the ground.
The loadbearing capacity of an element of structure can be influenced by:
- Size – a thick wall can take higher loads than a thinner wall of similar material and construction. A tall concrete-block wall may be more prone to buckling than one which is a quarter of its height and of identical material, construction and loading.
- Density – dense materials such as stone and concrete are more able to resist failure under loading compared to materials such as aerated blocks.
- Material properties such as density, compressive strength, resistance to shear forces, bending, vibration and so on.
- Structural design – by virtue of its shape. For example, a folded-plate roof may be able to accept higher loads than one that is a simple flat slab. Similarly, a diagonally-braced structure will have a higher loadbearing capacity (and therefore be more rigid) than an identical structure that is unbraced.
- Environmental conditions such as temperature, fire, frost, moisture and so on.
[edit] Related articles on Designing Buildings
- Arches.
- Bearing capacity.
- Bending moment.
- Biaxial bending.
- Braced frame.
- Concept structural design of buildings.
- Concrete-steel composite structures.
- Dead loads.
- Elastic limit.
- Elements of structure in buildings.
- Floor loading.
- Force.
- Lateral loads.
- Live loads.
- Load bearing.
- Load-bearing wall.
- Long span roof.
- Moment.
- Point of contraflexure.
- Shear force.
- Shear wall.
- Stiffness.
- Subsidence.
- Supported wall.
- Uniformly Distributed Load.
Featured articles and news
CIAT Celebrates 60 years of Architectural Technology
Find out more #CIAT60 social media takeover.
The BPF urges Chancellor for additional BSR resources
To remove barriers and bottlenecks which delay projects.
Flexibility over requirements to boost apprentice numbers
English, maths and minimumun duration requirements reduced for a 10,000 gain.
A long term view on European heating markets
BSRIA HVAC 2032 Study.
Humidity resilience strategies for home design
Frequency of extreme humidity events is increasing.
National Apprenticeship Week 2025
Skills for life : 10-16 February
Update on the future of Grenfell Tower
Deputy Prime Minister decides for it be carefully taken down to the ground.
Ending decades of frustration, misinformation and distrust.
Essential tools in managing historically significant landscapes.
Classroom electrician courses a 'waste of money'
Say experts from the Electrical Contractors’ Association.
Wellbeing in Buildings TG 10/2025
BSRIA topic guide updates.
With brief background and WELL v2™.
From studies, to books to a new project, with founder Emma Walshaw.
Types of drawings for building design
Still one of the most popular articles the A-Z of drawings.
Who, or What Does the Building Safety Act Apply To?
From compliance to competence in brief.
The remarkable story of a Highland architect.
Commissioning Responsibilities Framework BG 88/2025
BSRIA guidance on establishing clear roles and responsibilities for commissioning tasks.