Elastic limit
Contents |
[edit] Introduction
All materials show elastic behaviour to a degree, some more than others. If, after a load has been applied and then quickly removed, a material returns rapidly to its original shape, it is said to be behaving elastically. Elasticity is a crucial characteristic of building materials; if it were not, buildings would suffer continuous deformation under load and ultimately would collapse.
[edit] Elastic limit
A solid material’s elastic limit is the maximum stress per unit area it can withstand before there is permanent deformation. In other words, it is the limit of the material’s elasticity, for up to that point, the solid can resume its original shape when the load is removed; after that point, it undergoes permanent (plastic) deformation and will not return to its original shape even after the load (yield load) has been removed.
On a graph showing a stress-strain curve, the point of the limit of elastic behaviour is called the ‘yield point’ and this is where plastic deformation begins – some of this deformation will be plastic and irreversible. In structural engineering, the yield point is regarded as a ‘soft failure’ mode which does not usually cause catastrophic or ultimate failure. It might be referred to as the fracture point or in the case of structural failure the breaking point, such as where a timber beam goes beyond, the yield, soft failure and fracture to break and collapse.
No structural material exhibits perfect elasticity: depending on the type of structure and the material, permanent deformations are unavoidable whenever loads exceed certain values. That is why engineers design structures to ensure the materials are being used within their elastic range and the loads involved will not produce permanent deformations.
All structural materials behave plastically beyond their elastic range. However, even if some materials show elastic behaviour, they may – after a long period of service, usually many years – exhibit a degree of plastic flow (or creep).
[edit] Linear elasticity
This occurs when the deformation in a material is proportional to the load applied. So, if a person weighing 50kg causes a diving board to deflect by 300mm, and another person weighing 100kg causes an identical board to deflect by 600mm, the diving board is exhibiting linear deflection. Most structural materials are, within limits, linearly elastic and are used within their linearly elastic range.
[edit] Related articles on Designing Buildings
- Concept structural design.
- Detailed design.
- Elements of structure in buildings.
- Moment.
- Stiffness.
- Structural engineer.
- Structural principles.
- Structural systems for offices.
- Structural vibration.
- Structures at the end of their design life.
- The development of structural membranes.
- Types of structural load.
- Vibrations.
Featured articles and news
ECA support for Gate Safe’s Safe School Gates Campaign.
Core construction skills explained
Preparing for a career in construction.
Retrofitting for resilience with the Leicester Resilience Hub
Community-serving facilities, enhanced as support and essential services for climate-related disruptions.
Some of the articles relating to water, here to browse. Any missing?
Recognisable Gothic characters, designed to dramatically spout water away from buildings.
A case study and a warning to would-be developers
Creating four dwellings... after half a century of doing this job, why, oh why, is it so difficult?
Reform of the fire engineering profession
Fire Engineers Advisory Panel: Authoritative Statement, reactions and next steps.
Restoration and renewal of the Palace of Westminster
A complex project of cultural significance from full decant to EMI, opportunities and a potential a way forward.
Apprenticeships and the responsibility we share
Perspectives from the CIOB President as National Apprentice Week comes to a close.
The first line of defence against rain, wind and snow.
Building Safety recap January, 2026
What we missed at the end of last year, and at the start of this...
National Apprenticeship Week 2026, 9-15 Feb
Shining a light on the positive impacts for businesses, their apprentices and the wider economy alike.
Applications and benefits of acoustic flooring
From commercial to retail.
From solid to sprung and ribbed to raised.
Strengthening industry collaboration in Hong Kong
Hong Kong Institute of Construction and The Chartered Institute of Building sign Memorandum of Understanding.
A detailed description from the experts at Cornish Lime.
IHBC planning for growth with corporate plan development
Grow with the Institute by volunteering and CP25 consultation.
Connecting ambition and action for designers and specifiers.
Electrical skills gap deepens as apprenticeship starts fall despite surging demand says ECA.
Built environment bodies deepen joint action on EDI
B.E.Inclusive initiative agree next phase of joint equity, diversity and inclusion (EDI) action plan.
Recognising culture as key to sustainable economic growth
Creative UK Provocation paper: Culture as Growth Infrastructure.



























