Contaminated land for construction
Approved Document C, Site preparation and resistance to contaminants and moisture, defines a ‘contaminant’ as: ‘Any substance which is or may become harmful to persons or buildings, including substances which are corrosive, explosive, flammable, radioactive or toxic’.
Contaminated land is land that presents a hazard in the form of material that has the potential for harm. For example, a landfill site may contain contaminated land.
Assessment of the risk of harm is based on the likelihood, frequency and seriousness of adverse consequences, which might include:
- Threats to human health.
- Damage to flora and fauna.
- Contamination of ground water.
- Damage to foundations and structures.
- Settlement
- Subsidence.
- Migration of contaminants to adjacent land.
The introduction of the Environmental Protection Act has been the driving force behind the treatment of contaminated land. The main types of contaminant identified are:
- Toxic or carcinogenic chemicals such as cyanide, arsenic, mercury and benzene.
- Toxic or phytotoxic metals such as lead, chromium, nickel, copper, cadmium and zinc.
- Organic contaminants such as oils, solvents and phenols.
- Corrosive substances such as acids and sulphates.
- Flammable, toxic or asphyxiating gases such as methane, hydrogen sulphide, and carbon dioxide.
- Combustible material.
- Asbestos.
- Radioactive substances.
Some likely sources of contamination are:
- Animal and animal products processing works.
- Asbestos works.
- Cable burning and bonfire sites.
- Ceramics, cement and asphalt manufacturing works.
- Chemical works.
- Dockyards and dockland.
- Engineering works.
- Garden soils, especially in the capital can contain cadmium.
- Gasworks can result in the presence of cyanide and phenol.
- Industries making or using wood preservatives.
- Landfill and other waste disposal sites.
- Metal treatment and finishing.
- Mining and extraction industries can result in arsenic contamination.
- Munitions production and testing sites.
- Oil storage and distribution sites.
- Paint and dyestuff industries.
- Paper and printing works.
- Petrol stations and refineries.
- Power stations.
- Railway land, especially large sidings and depots.
- Road vehicle fuelling, service and repair: garages and filling stations
- Scrap yards.
- Sewage farms and works can result in zinc and copper contamination .
- Tanneries.
- Textile works and dye works.
If contamination is suspected, desktop studies of site history should be carried out to establish whether there is a need for further investigation. Sources for a desktop study might include:
- Maps: Ordinance Survey (current and historical), geological survey maps and town plans.
- Statutory authority and utilities data, such as local authorities, river purification boards, the Health and Safety Executive and the National River Agency.
- Trade information from directories and trade associations.
- Photographic records, particularly aerial shots.
- Technical data from public literature.
- Knowledge gained from adjacent development.
- Anecdotal information from libraries, local residents and local newspapers.
- Meteorological, mining and hydro-geological records.
If a desktop study raises concerns, or if the history of a site is not fully known, then trial pits and borehole investigations should be undertaken, concentrating on the areas of greatest suspicion. Tests may be based on soil samples taken at a variety of depths and locations in order to determine the nature and level of contamination as well as its extent. Initially, this is likely to be at least nine samples per hectare, but more testing may be necessary depending on what is found.
There are three main clean-up techniques:
- Excavation and removal of contaminated soil followed by either disposal or off-site treatment.
- Limiting the spread of the contamination.
- Using a treatment to destroy, remove or detoxify containments.
Remediation can be in-situ (on site on undisturbed soil) or ex-situ (applied to excavated soil either on or off site).
TECHNIQUE | DETAILS |
Soil removal |
Followed by: |
Containment | For example, 'pathway interdiction' using high density polythene as a membrane both horizontally and vertically as a capping, encapsulating the contaminants and separating them from new construction. This option is chosen if other techniques result in unrealistic costs or create potential hazards. |
Soil treatment |
Contamination can be:
This can be in-situ or ex-situ. |
The main types of soil treatment are:
- Biological treatment.
- Thermal treatment / desorption (using heat to increase the volatility of contaminants so they can be removed).
- Chemical immobilisation / stabilisation / solidification.
- Washing (injecting clean water and extracting contaminated water).
- Soil vapour extraction using vacuum extraction (this is particularly effective with volatile chemicals, such as petrol and chlorinated solvents).
Biological treatment, also known as bioremediation, is the most common technique. It utilises microorganisms and plants and is particularly suitable for fuel-based contaminants. Microbes 'eat' the chemicals found in oil spills, digesting them to produce water and carbon dioxide. For the bacteria to grow, the right temperature, nutrients and amount of oxygen must be provided. This can be achieved by pumping in air and other substances such as molasses.
In some countries, the cold weather conditions means that the soil has to be excavated and cleaned above ground with the help of heaters, and an oxygen supply. Bioremediation allows cleaning on site, generally it does not require much labour or equipment and so is usually cheaper than other methods.
Although some solutions are cheaper than others, the cost of site investigation and soil treatment is still significant. Developers suggest that it should be up to the government to cover the cost of cleaning up contaminated land, otherwise, the need to pass on costs to purchasers means that it will not always be possible to provide affordable housing on such sites.
NB:
- Government grants for cleaning up contaminated land ended in 2017.
- Inorganic contaminants are those contaminants comprised primarily of metals, metal compounds, certain minerals, acids and alkalis. Organic contaminants are composed primarily of oils, tars or solvents. Ref The HS2 London-West Midlands Environmental Statement, Glossary of terms and list of abbreviations, DETR 2013.
- The SuDS Manual published by CIRIA in 2015 defines contaminated ground as: 'Ground that has the presence of substances that, when present in sufficient quantities or concentrations, could cause significant harm to people or protected species or significant pollution of surface waters or groundwater.'
- Water safety in buildings, published by the World Health Organization in 2011, defines contamination as the: ‘Presence of an infectious or toxic agent or matter on a human or animal body surface, in or on a product prepared for consumption, or on other inanimate objects, including conveyances, that may constitute a public health risk .’
- s78A(2) of the Environmental Protection Act 1990 defines conatminated land as: “...any land which appears to the local authority in whose area it is situated to be in such a condition, by reason of substances in, on or under the land, that (a) significant harm is being caused or there is a significant possibility of such harm being caused, or; (b) pollution of controlled waters is being, or is likely to be caused”.
[edit] Related articles on Designing Buildings
- Approved Document C.
- Asbestos.
- Biosolids.
- Brownfield land.
- Building on fill.
- Conceptual site model.
- Concrete in aggressive ground (SD 1).
- Cover systems for land regeneration - thickness of cover systems for contaminated land (BR465).
- Ground conditions.
- Ground improvement techniques.
- Ground investigation.
- Hazardous substances.
- Hydraulically treated soils in residential construction (BR 513).
- Managing risks in existing buildings: An overview of UK risk-based legislation for commercial and industrial premises (FB 86).
- Methane and other gasses from the ground.
- Pre construction information.
- Radon.
- Radon: Guidance on protective measures for new buildings BR 211.
- Site appraisal.
- Site investigation.
- Soil survey.
- Solid and liquid contaminants risk assessments.
- The risk of asbestos on brownfield sites.
[edit] External references
- The Water Resources Act.
- The Environmental Protection Act
- ICRCL Committee on land reclamation.
- BSI Draft for Development DD 175 for identification of potentially contaminated land and its investigation.
- Institution of Environmental Health Officers: Guidance on development of contaminated land.
- Scottish Enterprise Handbook on development of contaminated land.
- Department of the Environment Waste Management Paper No 27.Landfill Gas: A Technical Memorandum Providing Guidance on the Monitoring and Control of Landfill Gas.
- Waste (England and Wales) Regulations.
- Environment Agency: Control of Pollution (oil storage, England).
- EU Soil Framework Directive.
- European Commission: Soil.
- The Scottish Governments: Planning Advice Note PAN 33, The development of contaminated land.
Featured articles and news
Deputy editor of AT, Tim Fraser, discusses the newly formed society with its current chair, Chris Halligan MCIAT.
Barratt Lo-E passivhaus standard homes planned enmasse
With an initial 728 Lo-E homes across two sites and many more planned for the future.
Government urged to uphold Warm Homes commitment
ECA and industry bodies write to Government concerning its 13.2 billion Warm Homes manifesto commitment.
Places of Worship in Britain and Ireland, 1929-1990. Book review.
The emancipation of women in art.
CIOB Construction Manager of the Year 2025
Just one of the winners at the CIOB Awards 2025.
Call for independent National Grenfell oversight mechanism
MHCLG share findings of Building Safety Inquiry in letter to Secretary of State and Minister for Building Safety.
The Architectural Technology Awards
AT Awards now open for this the sixth decade of CIAT.
50th Golden anniversary ECA Edmundson awards
Deadline for submissions Friday 30 May 2025.
The benefits of precast, off-site foundation systems
Top ten benefits of this notable innovation.
Encouraging individuals to take action saving water at home, work, and in their communities.
Takes a community to support mental health and wellbeing
The why of becoming a Mental Health Instructor explained.
Mental health awareness week 13-18 May
The theme is communities, they can provide a sense of belonging, safety, support in hard times, and a sense purpose.
Mental health support on the rise but workers still struggling
CIOB Understanding Mental Health in the Built Environment 2025 shows.
Design and construction material libraries
Material, sample, product or detail libraries a key component of any architectural design practice.
Construction Products Reform Green Paper and Consultation
Still time to respond as consultation closes on 21 May 2025.
Resilient façade systems for smog reduction in Shanghai
A technical approach using computer simulation and analysis of solar radiation, wind patterns, and ventilation.