Solar gain in buildings
Solar gain is short wave radiation from the sun that heats a building, either directly through an opening such as a window, or indirectly through the fabric of the building. Solar design (or passive solar design) is an aspect of passive building design that focusses on maximising the use of heat energy from solar radiation.
Solar gain is a particularly effective form of passive heating as radiation from the sun is predominately short-wave infrared radiation which is able to pass through glazing and heat the internal fabric of the building. The long-wave infrared radiation that is re-radiated by the heated fabric of the building is not able to pass back out through the glazing. This results in heat accumulating in the interior, sometimes referred to as the 'greenhouse effect'. See Thermal optical properties for more information.
Very broadly, solar gain can be beneficial in cooler climates when it can be used as a passive way of heating buildings. However, too much solar gain can cause overheating and for this reason, Part L of the UK building regulations places restrictions on the amount of glazing that can be used in buildings. Overheating as a result of solar gains can be a particular problem in warmer climates. However, the situation is complicated by the variation in conditions throughout the day and year which can mean that solar gain can be beneficial in the morning and evening, or during the winter, but can be problematic during the middle of the day or in the summer.
Relatively straight-forward design solutions such as brise soleil can be used to allow low-level winter sun to enter a building, but to shade higher, summer sun. Other solutions, such as planting deciduous trees in front of windows can be effective as leaf cover in the summer will shade glazing from solar radiation, whereas in the winter sunlight is able to pass between the bare branches and enter the building.
[Image: Passive design]
Thermal mass in the building's interior can be used to even out variations in solar radiation, storing gains accumulated during the middle of the day and releasing them slowly, providing an ongoing heat source during cooler times of the day. An example of the use of thermal mass is a trombe wall, illustrated below.
Low-e coatings on glazing can also increase the retention of solar gains by increasing the proportion of re-radiated long-wave infrared radiation that is reflected back into the interior. This effect can be enhanced at night by the use of curtains or shutters.
Maximising the benefits of solar gains can be complex and requires consideration of a wide range of issues:
- Location.
- Landscape.
- Orientation.
- Massing.
- Shading.
- Thermal mass.
- Insulation.
- Internal layout.
- The positioning of openings.
- The thermal optical properties of openings.
- The thermal properties of the building envelope.
In large or complex buildings, optimising solar gains can be require a great deal of analysis, and may involve the use of techniques such as computational fluid dynamics to model the distribution of heat through the building. Design solutions such as solar chimneys can drive the entire design of the building, its heating strategy and ventilation strategy.
Solar heat gain can be reduced by:
- Horizontal shading.
- Limiting the area of openings.
- Orientating openings away from the sun path.
- Reducing solar transmittance through openings, for example by reflective glazing. This might be used in conjunction with low-e coatings that reduce the long-wave solar radiation transmitted from the outside to the inside.
- Purging heat gains by the introduction of ventilation.
- Insulating the building envelope to prevent the transmission of indirect solar gains.
- Reducing the solar absorptance of the building envelope. The term 'albedo' relates to the total reflectance of a specific system. White coloured surfaces can be effective in minimising heat transfer into buildings.
- Reducing the urban heat island effect.
- Planting to provide shading and to reduce the solar absorption of roofs. See Green roofs for more information.
NB: Solar radiation can also be used to provide heat to buildings through the use of solar thermal panels and solar photovoltaics.
Approved Document O was published on 15 December 2021 as part of the government’s plans to deliver net zero. It covers overheating mitigation requirements for new residential buildings:
- Limiting unwanted solar gains in summer.
- Providing an adequate means to remove heat from the indoor environment.
The aim of requirement is to protect the health and welfare of occupants of the building by reducing the occurrence of high indoor temperatures.
For more information see: Approved Document O.
[edit] Related articles on Designing Buildings
- Albedo.
- Approved Document O.
- Better prediction of overheating in new homes.
- Brise soleil.
- Building fabric.
- Cool roofs.
- Designing daylight solutions for commercial buildings.
- Emissivity.
- EN 17037 Daylight in buildings.
- G-value.
- Large scale solar thermal energy.
- Low-e glass.
- Natural ventilation.
- Part L.
- Passive building design.
- Shading coefficient.
- Solar chimney.
- Solar heat gain coefficient.
- Solar photovoltaics.
- Solar shading.
- Solar thermal panels.
- Thermal comfort.
- Thermal mass
- Thermal optical properties.
- Trombe wall.
- Urban heat island effect.
- Visible light.
Featured articles and news
Deputy editor of AT, Tim Fraser, discusses the newly formed society with its current chair, Chris Halligan MCIAT.
Barratt Lo-E passivhaus standard homes planned enmasse
With an initial 728 Lo-E homes across two sites and many more planned for the future.
Government urged to uphold Warm Homes commitment
ECA and industry bodies write to Government concerning its 13.2 billion Warm Homes manifesto commitment.
Places of Worship in Britain and Ireland, 1929-1990. Book review.
The emancipation of women in art.
CIOB Construction Manager of the Year 2025
Just one of the winners at the CIOB Awards 2025.
Call for independent National Grenfell oversight mechanism
MHCLG share findings of Building Safety Inquiry in letter to Secretary of State and Minister for Building Safety.
The Architectural Technology Awards
AT Awards now open for this the sixth decade of CIAT.
50th Golden anniversary ECA Edmundson awards
Deadline for submissions Friday 30 May 2025.
The benefits of precast, off-site foundation systems
Top ten benefits of this notable innovation.
Encouraging individuals to take action saving water at home, work, and in their communities.
Takes a community to support mental health and wellbeing
The why of becoming a Mental Health Instructor explained.
Mental health awareness week 13-18 May
The theme is communities, they can provide a sense of belonging, safety, support in hard times, and a sense purpose.
Mental health support on the rise but workers still struggling
CIOB Understanding Mental Health in the Built Environment 2025 shows.
Design and construction material libraries
Material, sample, product or detail libraries a key component of any architectural design practice.
Construction Products Reform Green Paper and Consultation
Still time to respond as consultation closes on 21 May 2025.
Resilient façade systems for smog reduction in Shanghai
A technical approach using computer simulation and analysis of solar radiation, wind patterns, and ventilation.