Shading coefficient for buildings
Shading coefficients can be used to describe the amount of solar heat that passes through a transparent or translucent material compared to the amount of solar heat that passes through a sheet of clear float glass with a total solar heat gain coefficient of 0.87 (i.e. a sheet of clear float glass 3 mm thick which has a shading coefficient of 1).
It is typically used to describe the solar heat transmittance properties of glass, but has also been used for other translucent and transparent materials.
Solar transmittance is important for determining the solar heat gain into an enclosed space during sunny conditions. Solar heat gain can be beneficial in the winter, as it reduces the need for heating, but in the summer it can cause overheating.
The total solar heat transmittance is equal to the solar heat that is transmitted through the material directly, plus the solar heat that is absorbed by the material and then re-emitted into the enclosed space.
Shading coefficients can be measured using an illuminated hot box under simulated summer and winter conditions, and from these values, solar heat gain under a range of different conditions may be predicted using known data about solar heat gain through standard clear float glass.
This enables the behaviour of translucent or transparent materials to be predicted under different environmental conditions without having to measure the angular optical properties of every individual material.
Total shading coefficients (TSC) can be broken down into short-wave shading coefficients (SWSC) and long-wave shading coefficients (LWSC).
Manufacturers are now moving towards the use of solar heat gain coefficients (SHGC) or window solar factors (g-values) rather than shading coefficients. These represent the fraction of incident solar radiation transmitted by a window, expressed as a number between 1 and 0, where 1 indicates the maximum possible solar heat gain, and zero, no solar heat gain.
In very approximate terms, the solar heat gain coefficient is equal to the shading coefficient x 0.87.
[edit] Related articles on Designing Buildings Wiki
- Architectural technology research at Sheffield Hallam University.
- BREEAM.
- Code for Sustainable Homes.
- Computational fluid dynamics (CFD).
- Emission rates.
- Energy certificates.
- Environmental legislation.
- g-value.
- Green deal.
- Leadership in Energy and Environmental Design.
- Light shelf.
- Low-e glass.
- Solar heat gain coefficient.
- Solar reflectance index.
- Solar transmittance (gtot).
- Sustainability.
- Thermal bridge.
- U value.
- Zero carbon homes.
- Zero carbon non-domestic buildings.
Featured articles and news
Shading for housing, a design guide
A look back at embedding a new culture of shading.
The Architectural Technology Awards
The AT Awards 2025 are open for entries!
ECA Blueprint for Electrification
The 'mosaic of interconnected challenges' and how to deliver the UK’s Transition to Clean Power.
Grenfell Tower Principal Contractor Award notice
Tower repair and maintenance contractor announced as demolition contractor.
Passivhaus social homes benefit from heat pump service
Sixteen new homes designed and built to achieve Passivhaus constructed in Dumfries & Galloway.
CABE Publishes Results of 2025 Building Control Survey
Concern over lack of understanding of how roles have changed since the introduction of the BSA 2022.
British Architectural Sculpture 1851-1951
A rich heritage of decorative and figurative sculpture. Book review.
A programme to tackle the lack of diversity.
Independent Building Control review panel
Five members of the newly established, Grenfell Tower Inquiry recommended, panel appointed.
Welsh Recharging Electrical Skills Charter progresses
ECA progressing on the ‘asks’ of the Recharging Electrical Skills Charter at the Senedd in Wales.
A brief history from 1890s to 2020s.
CIOB and CORBON combine forces
To elevate professional standards in Nigeria’s construction industry.
Amendment to the GB Energy Bill welcomed by ECA
Move prevents nationally-owned energy company from investing in solar panels produced by modern slavery.
Gregor Harvie argues that AI is state-sanctioned theft of IP.
Experimental AI housing target help for councils
Experimental AI could help councils meet housing targets by digitising records.
BSRIA Occupant Wellbeing survey BOW
Occupant satisfaction and wellbeing tool inc. physical environment, indoor facilities, functionality and accessibility.