Shading coefficient for buildings
Shading coefficients can be used to describe the amount of solar heat that passes through a transparent or translucent material compared to the amount of solar heat that passes through a sheet of clear float glass with a total solar heat gain coefficient of 0.87 (i.e. a sheet of clear float glass 3 mm thick which has a shading coefficient of 1).
It is typically used to describe the solar heat transmittance properties of glass, but has also been used for other translucent and transparent materials.
Solar transmittance is important for determining the solar heat gain into an enclosed space during sunny conditions. Solar heat gain can be beneficial in the winter, as it reduces the need for heating, but in the summer it can cause overheating.
The total solar heat transmittance is equal to the solar heat that is transmitted through the material directly, plus the solar heat that is absorbed by the material and then re-emitted into the enclosed space.
Shading coefficients can be measured using an illuminated hot box under simulated summer and winter conditions, and from these values, solar heat gain under a range of different conditions may be predicted using known data about solar heat gain through standard clear float glass.
This enables the behaviour of translucent or transparent materials to be predicted under different environmental conditions without having to measure the angular optical properties of every individual material.
Total shading coefficients (TSC) can be broken down into short-wave shading coefficients (SWSC) and long-wave shading coefficients (LWSC).
Manufacturers are now moving towards the use of solar heat gain coefficients (SHGC) or window solar factors (g-values) rather than shading coefficients. These represent the fraction of incident solar radiation transmitted by a window, expressed as a number between 1 and 0, where 1 indicates the maximum possible solar heat gain, and zero, no solar heat gain.
In very approximate terms, the solar heat gain coefficient is equal to the shading coefficient x 0.87.
[edit] Related articles on Designing Buildings Wiki
- Architectural technology research at Sheffield Hallam University.
- BREEAM.
- Code for Sustainable Homes.
- Computational fluid dynamics (CFD).
- Emission rates.
- Energy certificates.
- Environmental legislation.
- g-value.
- Green deal.
- Leadership in Energy and Environmental Design.
- Light shelf.
- Low-e glass.
- Solar heat gain coefficient.
- Solar reflectance index.
- Solar transmittance (gtot).
- Sustainability.
- Thermal bridge.
- U value.
- Zero carbon homes.
- Zero carbon non-domestic buildings.
Featured articles and news
A detailed description fron the experts at Cornish Lime.
IHBC planning for growth with corporate plan development
Grow with the Institute by volunteering and CP25 consultation.
Connecting ambition and action for designers and specifiers.
Electrical skills gap deepens as apprenticeship starts fall despite surging demand says ECA.
Built environment bodies deepen joint action on EDI
B.E.Inclusive initiative agree next phase of joint equity, diversity and inclusion (EDI) action plan.
Recognising culture as key to sustainable economic growth
Creative UK Provocation paper: Culture as Growth Infrastructure.
Futurebuild and UK Construction Week London Unite
Creating the UK’s Built Environment Super Event and over 25 other key partnerships.
Welsh and Scottish 2026 elections
Manifestos for the built environment for upcoming same May day elections.
Advancing BIM education with a competency framework
“We don’t need people who can just draw in 3D. We need people who can think in data.”
Guidance notes to prepare for April ERA changes
From the Electrical Contractors' Association Employee Relations team.
Significant changes to be seen from the new ERA in 2026 and 2027, starting on 6 April 2026.
First aid in the modern workplace with St John Ambulance.
Solar panels, pitched roofs and risk of fire spread
60% increase in solar panel fires prompts tests and installation warnings.
Modernising heat networks with Heat interface unit
Why HIUs hold the key to efficiency upgrades.



















