Solar Reflectance Index in the built environment
The Solar Reflectance Index (SRI) is a measure of the solar reflectance and emissivity of materials that can be used as an indicator of how hot they are likely to become when solar radiation is incident on their surface. The lower the SRI, the hotter a material is likely to become in the sunshine.
This is important as solar radiation can cause buildings to overheat if their external fabric has a high solar absorptance and is unable to 'lose' (emit) absorbed heat by re-radiating it to the outside. In addition, the high solar absorbent nature of many human-made surfaces means that urban areas can have a higher average temperature than surrounding green spaces. This is referred to as the urban heat island effect.
The Solar Reflectance Index can be used in 'cool roof' calculations to demonstrate compliance with LEED (Leadership in Energy and Environmental Design), a voluntary environmental certification system developed by the U.S. Green Building Council.
SRI is a scale from 0 to 100 on which materials that absorb and retain solar radiation (and so become hotter in sunshine) have a lower number, whilst highly reflective materials (which remain cooler in sunshine) have a higher number.
The US department of energy defines the Solar Reflectance Index (SRI.) as '…a measure of the roof's ability to reject solar heat, as shown by a small temperature rise. It is defined so that a standard black (reflectance 0.05, emittance 0.90) is 0 and a standard white (reflectance 0.80, emittance 0.90) is 100. For example, the standard black has a temperature rise of 90 deg. F (50 deg. C) in full sun, and the standard white has a temperature rise of 14.6 deg. F (8.1 deg. C). Once the maximum temperature rise of a given material has been computed, the SRI can be computed by interpolating between the values for white and black.'
NB This definition means that it is possible to have materials with an SRI of less than 0 or more than 100.
SRI can be calculated based on the pitch of a roof, its weight, its solar reflectance, thermal emittance (emissivity) and its ageing characteristics. Ref Cool Roof Rating Council Solar reflectance index calculation worksheet.
The selection of materials with a high SRI can reduce indirect solar gain in buildings and reduce the urban heat island effect. For example, metal roofs finished with a high SRI coating will have a lower temperature under sunny conditions compared to a similar, uncoated metal roof. However, effective solar design is more complicated than simply selecting high SRI materials, as in cooler locations solar gain may actually be desirable.
SRI can be considered a better indicator of a materials response to solar radiation than 'albedo' (from the Latin for 'whiteness') as albedo is a simple ratio of reflected to incident radiation and does not take account of emissivity.
Source: Cambridge Science Park
[edit] Related articles on Designing Buildings Wiki
- Albedo.
- Amber warnings raise building overheating concern.
- Cool roofs.
- Emissivity.
- Green roofs.
- G-value.
- Light reflectance value.
- Low-e glass.
- Part L.
- Passive building design.
- Preventing overheating.
- Shading coefficient.
- Solar gain.
- Solar heat gain coefficient.
- Solar transmittance (gtot).
- Thermal comfort.
- Thermal mass
- Thermal optical properties.
- Types of cool roofs.
- Urban heat island effect.
[edit] External references
- Autodesk, Direct solar gain.
- The US department of energy, Cool roofs.
- Cool Roof Rating Council Solar reflectance index calculation worksheet.
Featured articles and news
Futurebuild and UK Construction Week London Unite
Creating the UK’s Built Environment Super Event and over 25 other key partnerships.
Welsh and Scottish 2026 elections
Manifestos for the built environment for upcoming same May day elections.
Advancing BIM education with a competency framework
“We don’t need people who can just draw in 3D. We need people who can think in data.”
Guidance notes to prepare for April ERA changes
From the Electrical Contractors' Association Employee Relations team.
Significant changes to be seen from the new ERA in 2026 and 2027, starting on 6 April 2026.
First aid in the modern workplace with St John Ambulance.
Ireland's National Residential Retrofit Plan
Staged initiatives introduced step by step.
Solar panels, pitched roofs and risk of fire spread
60% increase in solar panel fires prompts tests and installation warnings.
Modernising heat networks with Heat interface unit
Why HIUs hold the key to efficiency upgrades.
Reflecting on the work of the CIOB Academy
Looking back on 2025 and where it's going next.
Procurement in construction: Knowledge hub
Brief, overview, key articles and over 1000 more covering procurement.
Sir John Betjeman’s love of Victorian church architecture.
Exchange for Change for UK deposit return scheme
The UK Deposit Management Organisation established to deliver Deposit Return Scheme unveils trading name.
A guide to integrating heat pumps
As the Future Homes Standard approaches Future Homes Hub publishes hints and tips for Architects and Architectural Technologists.
BSR as a standalone body; statements, key roles, context
Statements from key figures in key and changing roles.
Resident engagement as the key to successful retrofits
Retrofit is about people, not just buildings, from early starts to beyond handover.





















