Better prediction of overheating in new homes
A detailed study of three modern, energy-efficient flats has been carried out to improve the means of predicting indoor temperatures and the risk of overheating, when designing multi-residential buildings.
Overheating in modern homes – which are often designed with a focus on improving energy efficiency – is a growing problem and likely to be exacerbated by climate change. To counter this, it is important when designing buildings to reliably assess indoor temperatures and the potential for overheating. These are typically predicted with dynamic simulations, using Building Performance Simulation (BPS) tools.
BPS tools need accurate data on a complex range of issues in the areas of climate, site context, building fabric, building services and occupant behaviour. All of these bring high levels of uncertainty that make correctly predicting indoor temperature very difficult, and can lead to a gap between the expected and actual performance.
A BRE Trust supported PhD project has been conducted by Kostas Mourkos at Loughborough University, to improve BPS tools’ reliability when predicting overheating risks in homes in multi-residential buildings. This was achieved by studying in detail three modern energy-efficient flats located in London. The flats are representative of many high-density developments built in London in recent years.
Areas of overheating assessments that have been revealed as needing improvement by the analysis include:
- Specifying input values for parameters, such as the ventilation rates of mechanical ventilation systems.
- Providing guidance on handling the thermal interaction between communal spaces and the assessed flat.
- Examining different infiltration and exfiltration pathways.
The analysis also identified the key parameters influencing the observed gap between predicted and monitored indoor air temperature. While demonstrating how such a gap can be efficiently bridged through Bayesian calibration, this research showed that predicting overheating accurately remains challenging.
The research recommended that an overheating assessment should incorporate sources of uncertainty (such as occupant behaviour), by providing a range of values – instead of a single value – of the desired Building Performance Indicator (BPI). It should also consider using less sensitive overheating metrics.
Kostas was supervised by Prof Christina Hopfe and Dr Rob McLeod at Graz University of Technology, Dr Chris Goodier at Loughborough University, and Dr Mick Swainson at BRE. For more information contact Kostas ([email protected]) or access the paper.
[edit] Related articles on Designing Buildings Wiki
- BRE articles.
- BRE Trust.
- Building Research Establishment.
- Heat stress.
- Home Quality Mark high temperature reporting tool.
- Human comfort in buildings.
- Overheating - assessment protocol.
- Overheating in residential properties.
- Overheating.
- Preventing overheating.
- Solar gain.
- Thermal comfort.
- Thermal indices.
- Thermal pleasure in the built environment.
Featured articles and news
Professional practical experience for Architects in training
The long process to transform the nature of education and professional practical experience in the Architecture profession following recent reports.
A people-first approach to retrofit
Moving away from the destructive paradigm of fabric-first.
International Electrician Day, 10 June 2025
Celebrating the role of electrical engineers from André-Marie Amperè, today and for the future.
New guide for clients launched at Houses of Parliament
'There has never been a more important time for clients to step up and ...ask the right questions'
The impact of recycled slate tiles
Innovation across the decades.
EPC changes for existing buildings
Changes and their context as the new RdSAP methodology comes into use from 15 June.
Skills England publishes Sector skills needs assessments
Priority areas relating to the built environment highlighted and described in brief.
BSRIA HVAC Market Watch - May 2025 Edition
Heat Pump Market Outlook: Policy, Performance & Refrigerant Trends for 2025–2028.
Committing to EDI in construction with CIOB
Built Environment professional bodies deepen commitment to EDI with two new signatories: CIAT and CICES.
Government Grenfell progress report at a glance
Line by line recomendation overview, with links to more details.
An engaging and lively review of his professional life.
Sustainable heating for listed buildings
A problem that needs to be approached intelligently.
50th Golden anniversary ECA Edmundson apprentice award
Deadline for entries has been extended to Friday 27 June, so don't miss out!
CIAT at the London Festival of Architecture
Designing for Everyone: Breaking Barriers in Inclusive Architecture.
Mixed reactions to apprenticeship and skills reform 2025
A 'welcome shift' for some and a 'backwards step' for others.