Location and civil engineers
A variant of the original map drawn by Dr. John Snow (1813-1858), a British physician who is one of the founders of medical epidemiology, showing cases of cholera in the London epidemics of 1854, clustered around the locations of water pumps.
Contents |
[edit] Introduction
Engineers of all disciplines need Geographic Information Systems (GIS) for the very simple reason that geospatial data makes projects faster, better, and more cost effective.
[edit] History
One of the first pieces of Geographic Information Systems (GIS) analysis was performed amidst an outbreak of cholera in London’s Soho district in 1854. The transmission mechanism for the disease was unknown at the time, so the evidence to investigate was constrained to the people who had fallen ill.
John Snow, an early epidemiologist was the first recorded person to treat this data as spatial data. He interviewed residents to understand key interactions with local environmental factors, including water pumps in the area. He put patients on a map and undertook Voronoi analysis [a spatial pattern technique] to draw a link between a single water pump and the illness, and further substantiated his findings by showing an anomaly; nearby brewery workers who should have been falling ill at the same rate were spared by their daily beer allowance, which enabled them to avoid the problem pump.
His findings are commonly cited within health geography, but rarely enter an engineering syllabus, despite his further geospatial work comparing practices of various waterwork engineering companies.
The key learning point for engineers is that if Snow had been working with merely a list of patients, he would have had no opportunity to link that list with the deadly water pump and it could have remained a medical mystery and a worsening tragedy. So where else can geospatial data uncover hidden value?
[edit] Finding a context
Whether you deal in utility networks, transportation, energy production or telecoms, your project has a location (grid coordinate, depth, height), or perhaps even a moving location, which is even more important to manage well. When an object has a location, it allows you to discover, explore, analyse and interact with its context of multiple, delicate interdependencies on built and natural environmental elements both inside and external to the project elements themselves. This might be demography, geomorphology, utility grid issues, flood forecasting, mobile phone pings of a moving population, bat records, the list goes on.
Manage these diverse elements poorly and you’ll find your project blocked at planning, poorly used once complete, inefficient to operate or perhaps just really difficult at end-of-life disposal stage. Multi-discipline project teams will come to loggerheads over mutually exclusive design decisions, construction teams will despair over how to implement environmental mitigation, and valuable information will be obfuscated at every data exchange point.
GIS (Geographic Information Systems) is of course only one tool to prevent this kind of chaos, but it’s a very important one, and one that’s frequently overlooked or seen as a competitor rather than a colleague or player within other data management systems such as BIM. Given that the big software houses on both sides are becoming increasingly intertwined, here are a few ways engineers can interact with GIS and implement it in workflows;
[edit] Layered insight
Due to the diversity of elements within the environmental context of a project, GIS is frequently the only solution which can examine them all within a single system by looking at their sole unifying factor - their location. GIS can instantly count how many trees with bat potential sit within 20km of a site or calculate the population that would suffer power outages in the event of substations flooding. It can calculate energy use baselines for a whole town on the journey to net zero, or identify every viewpoint impacted by development of a new road. Adding layers of data enables powerful analysis to be carried out.
[edit] Automating to unlock insights
GIS really lends itself to automation, via integration with sophisticated Python data libraries such as NumPy and SciPy, as well as the use of licensed tools such as FME. Using these tools allows GIS specialists to build reusable tools for iterative analysis and data processing tasks ranging from multi-sheet compulsory purchase order drawings for infrastructure development to networking tasks for water utilities.
By using multiple data sources, these insights can be updated based on changes in the surrounding area - not just changes within a project. Having an iterative source of insight into these outside changes will enable engineers to easily pinpoint and manage risk from externalities providing a more realistic view.
[edit] Crack your data management
Many of the burgeoning document management systems, such as Projectwise, don’t yet handle spatial data files well. However GIS as a sector has adapted to this technological drawback by building new links between systems to facilitate better cross-project data management.
A Spatial Common Data Environment, as we have developed at Atkins, provides a single-source-of-truth for spatial data, with visualisation tools such as 3D and 2D WebGIS already built in, to give a whole-project window for the full team. Using automated versioning, GIS can automatically allow design fixes to be shared with multi-disciplinary teams within, for example, a development consent order (DCO) process, helping to get deliverables done on time and with minimal rework.
[edit] GI-Yes for Engineers – a match made in data?
Atkins recently won accolades for their work in geospatial led design, where geospatial data on environmental constraints was considered first before a single engineer got to work. The resulting linear infrastructure centre line options handed to its civil engineers achieved the maximum avoidance of environmental, heritage and socioeconomic assets, speeding up delivery and reducing costs dramatically.
There is more data available than ever and ripe for GIS use. As our industries continue to develop digital processes, we will all need to use as much data as we can lay our hands on, and geospatial consultants alongside engineers can be the ideal partnership to ensure this happens.
This article originally appeared on the ICE Civil Engineer Blog under the title "Why it’s all about location, location, location for civil engineers". It was written by Elspeth McIntyre PIEMA, AMICE, Geospatial Consultant, Atkins and published on 1 July 2020.
--The Institution of Civil Engineers
[edit] Related articles on Designing Buildings Wiki
Featured articles and news
Boiler Upgrade Scheme and certifications consultation
Summary of government consultation which closes 11 June 2025.
Deputy editor of AT, Tim Fraser, discusses the newly formed society with its current chair, Chris Halligan MCIAT.
Barratt Lo-E passivhaus standard homes planned enmasse
With an initial 728 Lo-E homes across two sites and many more planned for the future.
Government urged to uphold Warm Homes commitment
ECA and industry bodies write to Government concerning its 13.2 billion Warm Homes manifesto commitment.
Places of Worship in Britain and Ireland, 1929-1990. Book review.
The emancipation of women in art.
CIOB Construction Manager of the Year 2025
Just one of the winners at the CIOB Awards 2025.
Call for independent National Grenfell oversight mechanism
MHCLG share findings of Building Safety Inquiry in letter to Secretary of State and Minister for Building Safety.
The Architectural Technology Awards
AT Awards now open for this the sixth decade of CIAT.
50th Golden anniversary ECA Edmundson awards
Deadline for submissions Friday 30 May 2025.
The benefits of precast, off-site foundation systems
Top ten benefits of this notable innovation.
Encouraging individuals to take action saving water at home, work, and in their communities.
Takes a community to support mental health and wellbeing
The why of becoming a Mental Health Instructor explained.
Mental health awareness week 13-18 May
The theme is communities, they can provide a sense of belonging, safety, support in hard times, and a sense purpose.
Mental health support on the rise but workers still struggling
CIOB Understanding Mental Health in the Built Environment 2025 shows.
Design and construction material libraries
Material, sample, product or detail libraries a key component of any architectural design practice.
Construction Products Reform Green Paper and Consultation
Still time to respond as consultation closes on 21 May 2025.
Resilient façade systems for smog reduction in Shanghai
A technical approach using computer simulation and analysis of solar radiation, wind patterns, and ventilation.