Vertical structures
Within the context of the built environment , the term ‘structure’ refers to anything that is constructed or built from different interrelated parts with a fixed location on the ground. This includes complete items such as buildings, and parts of items, such as arches. It can also be used to refer to a body of connected parts that is designed to bear loads, but is not intended to be occupied by people. Engineers sometimes refer to these as 'non-building' structures.
Buildings and other structures that are tall and rise upward might be known as vertical structures. This type of construction is becoming more common in urban areas where limited land space is available and there is a growing demand for high-rise buildings. Vertical structures have unique design and engineering requirements that must be met to ensure their stability, safety, and functionality.
A skyscraper is an example of a vertical structure, as is a high-rise building. Typically a high-rise building is considered to be more than 7-10 storeys or 23-30 m.
For more information see: High-rise building.
Types of structure used to construct vertical structures can include:
- Steel frame structures - This type of vertical structure is made of steel beams and columns that are welded or bolted together to form a framework. The steel frame provides stability and support for the building, and is often used for high-rise buildings, skyscrapers, and other commercial buildings.
- Concrete frame structures - This type of vertical structure is made of reinforced concrete, with beams and columns that are generally cast in place to form a solid framework. Concrete frame structures are often used for high-rise buildings, commercial buildings, and residential buildings.
- Hybrid structures - A hybrid structure is a combination of two or more types of vertical structures, such as steel and concrete, to create a framework that provides the best combination of strength, stability, and cost-effectiveness.
Advantages of vertical structures
- Space efficiency - Vertical structures can be efficient as they use of limited land space, providing more floor area per square foot of land than traditional, single-story buildings. This is particularly important in expensive city centre locations, where accommodation and views can be maximised on relatively small sites.
- Cost effective - Vertical structures can be less expensive to build than traditional, single-story buildings, as the cost of the foundation, roof, and so on is shared among multiple floors.
- Energy efficiency - Vertical structures can be more energy-efficient than traditional, single-story buildings, as they can be designed with efficient HVAC systems, and natural light can be maximised through the use of windows and skylights.
Disadvantages of vertical structures
- Cost of construction - The cost of construction can be high, as the building must be designed and engineered to meet strict structural and safety requirements, and the size of lifts, structure, services and so on can reduce the useable floor area.
- Maintenance costs - Vertical structures can be expensive to maintain, as lifts, cladding, HVAC systems, and other building systems must be regularly inspected and maintained to ensure their continued operation.
- Evacuation challenges - In the event of an emergency, evacuating a tall building can be a challenge, requiring well-designed emergency evacuation plans and procedures.
Vertical structures play a crucial role in the construction industry, providing an efficient use of limited land space. However, they also present challenges such as high costs of construction and maintenance, and the need for well-designed emergency evacuation plans. It is essential that these structures be designed and engineered by qualified specialist professionals to ensure their stability, safety, and functionality.
[edit] Related articles on Designing Buildings
Featured articles and news
Mixed reactions to apprenticeship and skills reform 2025
A 'welcome shift' for some and a 'backwards step' for others.
Licensing construction in the UK
As the latest report and proposal to licence builders reaches Parliament.
Building Safety Alliance golden thread guidance
Extensive excel checklist of information with guidance document freely accessible.
Fair Payment Code and other payment initiatives
For fair and late payments, need to work together to add value.
Pre-planning delivery programmes and delay penalties
Proposed for housebuilders in government reform: Speeding Up Build Out.
High street health: converting a building for healthcare uses
The benefits of health centres acting as new anchor sites in the high street.
The Remarkable Pinwill Sisters: from ‘lady woodcarvers’ to professionals. Book review.
Skills gap and investment returns on apprenticeships
ECA welcomes new reports from JTL Training and The Electrotechnical Skills Partnership.
Committee report criticises UK retrofit schemes
CIOB responds to UK’s Energy Security and Net Zero Committee report.
Design and construction industry podcasts
Professional development, practice, the pandemic, platforms and podcasts. Have we missed anything?
C20 Society; Buildings at Risk List 2025
10 more buildings published with updates on the past decade of buildings featured.
Boiler Upgrade Scheme and certifications consultation
Summary of government consultation, closing 11 June 2025.
Deputy editor of AT, Tim Fraser, discusses the newly formed society with its current chair, Chris Halligan MCIAT.
Barratt Lo-E passivhaus standard homes planned enmasse
With an initial 728 Lo-E homes across two sites and many more planned for the future.
Government urged to uphold Warm Homes commitment
ECA and industry bodies write to Government concerning its 13.2 billion Warm Homes manifesto commitment.
From project managers to rising stars, sustainability pioneers and more.
Places of Worship in Britain and Ireland, 1929-1990. Book review.