Lead in construction
Contents |
[edit] What is lead?
Lead is an element that is naturally occurring throughout the environment. It is a soft, malleable, heavy metal, with a density that exceeds that of most common materials. It has a number of properties that have made it a useful construction material for hundreds of years:
- High density.
- Low melting point.
- Ductility.
- Resistance to oxidation.
- Abundance.
- Ease of extraction.
However, in the late-19th century it was discovered that lead is poisonous, and its use has been less widespread since then. Exposure can result in serious health problems such as kidney disease, anaemia and cancer.
[edit] Construction applications
Lead was used for making water pipes in the Roman Empire, and its production subsequently grew throughout South and East Asia, especially in China and India. Across Europe, lead production began to revive in the 11th and 12th centuries, where it was used for roofing and plumbing. From the 13th century, lead was used to create stained glass. More recently, lead and lead compounds were used for roofs, cornices, tank linings, electrical conduits, cladding, flashing, gutters, and parapets.
Lead was incorporated into soft solder, an alloy of lead and tin, and used for soldering tinplate and copper pipe joints. Lead-based paint inhibits the rusting and corrosion of iron and steel, and continues to be used on steel structures such as bridges, railways, lighthouses, and so on.
[edit] Health risks
Lead dust, fumes or vapour can be created when lead and items containing lead are processed, worked or recovered from scrap/waste. The body absorbs lead when it is inhaled or swallowed, but generally not through the skin. Lead that is absorbed circulates in the blood and bones where it can be stored for many years without ill health developing.
However, high lead content can cause:
- Headaches.
- Tiredness.
- Constipation.
- Nausea and stomach pains.
- Anaemia.
- Weight loss.
More serious symptoms that can develop over time include:
[edit] Working with lead
Lead can be present in the built environment, particularly in older buildings, in the paint, roofing and pipework.
Work that can produce hazardous lead dust, fume or vapour includes:
- Blast removal and burning of old lead paint.
- Stripping of old lead paint.
- Hot cutting in demolition and dismantling operations.
- Scrap-processing.
- Lead roofing.
- Lead smelting, refining, alloying and casting.
- Manufacturing leaded glass.
- Recycling lead-containing materials.
Some prevention and safety techniques that can be employed when working with lead include:
- Using substitute materials.
- Leaving lead paint in place if it is in good condition and/or covered by non-leaded paint.
- Using cold/mechanical cutting instead of hot cutting.
- Using lower temperatures without blow-lamps or gas torches.
- Use chemical paint strippers, wet abrasive paper, scrapers and infrared equipment.
- Wear appropriate respiratory protective equipment, disposable coveralls and gloves.
- Prevent the spread of dust or fumes with plastic sheeting.
- Wash and clean surfaces which may have been exposed to dust or fumes.
- Dispose of contaminated waste safely.
- Wash hands and forearms thoroughly after working with lead.
- Avoid hand-mouth/eye contact when in contaminated areas.
[edit] Types of lead
Lead is typically available as as:
Rolled lead sheet is available in a range of codes (generally codes 3-8 for construction) as defined in BS EN 12588:2006: Lead and lead alloys. Rolled lead sheet for building purposes. The code relates to the thickness of the sheet; with code 3 being 1.33 mm thick and code 8 being 3.55 mm thick.
[edit] Related articles on Designing Buildings
- Aluminium.
- Asbestos.
- Construction dust.
- Construction materials.
- COSHH.
- Deleterious materials.
- Flashing.
- Hazardous substances.
- Lead.
- Paint.
- Risk assessment.
- Soldering.
- Spangle.
- Tin.
- Types of roof.
- Volatile organic compounds.
[edit] External resources
Featured articles and news
Principal Contractor Competency Certification Scheme
CIOB PCCCS competence framework for Principal Contractors.
The CIAT Principal Designer register
Issues explained via a series of FAQs.
Conservation in the age of the fourth (digital) industrial revolution.
Shaping the future of heritage
Embracing the evolution of economic thinking.
Ministers to unleash biggest building boom in half a century
50 major infrastructure projects, 5 billion for housing and 1.5 million homes.
RIBA Principal Designer Practice Note published
With key descriptions, best practice examples and FAQs, with supporting template resources.
Electrical businesses brace for project delays in 2025
BEB survey reveals over half worried about impact of delays.
Accelerating the remediation of buildings with unsafe cladding in England
The government publishes its Remediation Acceleration Plan.
Airtightness in raised access plenum floors
New testing guidance from BSRIA out now.
Picking up the hard hat on site or not
Common factors preventing workers using head protection and how to solve them.
Building trust with customers through endorsed trades
Commitment to quality demonstrated through government endorsed scheme.
New guidance for preparing structural submissions for Gateways 2 and 3
Published by the The Institution of Structural Engineers.
CIOB launches global mental health survey
To address the silent mental health crisis in construction.
New categories in sustainability, health and safety, and emerging talent.
Key takeaways from the BSRIA Briefing 2024
Not just waiting for Net Zero, but driving it.
The ISO answer to what is a digital twin
Talking about digital twins in a more consistent manner.
Top tips and risks to look out for.
New Code of Practice for fire and escape door hardware
Published by GAI and DHF.