Engineered bamboo
Bamboo can be engineered to form products with improved and/or standardised mechanical, physical and aesthetic properties. As in the case for other lignocellulosic materials such as wood, bamboo poles (culms) with variable diameters, lengths and shapes can be transformed into straight edged engineered products with predictable properties for construction applications.
Engineered bamboo products (EBPs) and engineered wood products (EWPs) possess an intrinsic carbon storage capacity, as well as the potential for a lower embodied energy and lower carbon emissions from manufacturing than conventional construction products such as concrete or steel.
For example, the carbon footprint of concrete and stainless steel (304) is two to ten times higher than that of bamboo plywood (a laminated EBP) or an indoor use plywood according to IDEMAT database (2016) [1].
The embodied energy for producing one kilogramme (kg) of stainless steel is almost four times higher than that of producing one kilogramme of plywood [2] or bamboo plywood; 56.70 MJ/kg for the former and 15 MJ/kg and 15.5 for the laminated EBP [1].
Figure 1 illustrates EBP's capability for storing more carbon dioxide (CO2) than the raw and non-processed bamboo culms. There is more CO2 storage equivalent in the bamboo plantation due to the higher use of material per dry weight (d.w.) for the manufacture of EBPs.
Figure 1 Equivalent C02 sequestration in bamboo and wood forest for different bamboo based products. Data from [3].
In addition to bamboo’s remarkable environmental properties and high yield of carbon storing biomass when transformed into durable EBPs, recent research at the University of Bath (UK) has demonstrated potential as a complementary material to wood (rather than a substitute) in structural applications [3].
Cross laminated Guadua-bamboo (G-XLam) panels (Figure 2) developed and tested at the university with the support of British firm Amphibia BASE showed a two-fold increase in density and MOE when compared to analogous cross laminated (CLT) panels (M1 BSP crossplan by Mayr-Melnhof Holz) (Table 1).
That is, the in-plane compression moduli of elasticity of these CLT panels in the main direction (Epc,0) and transverse direction (Epc,90) were about half of that of G-XLam3 and G-XLam5 panels (three and five layers); e.g. Epc,0 was 7.57GPa and 14.83 GPa for CLT3 and G-XLam3 panels.
Figure 2 G-XLam bamboo-Guadua panels for stiffness driven applications
Table 1 Summary of the results obtained from the in-plane compression panel testing and the FE and predicted values previously obtained by [4]
The thickness of G-XLam3 and G-XLam5 panels is almost a fifth of CLT3 and CLT5 panels (e.g. thicknesses of CLT5 and G-XLam5 were 134mm and 27.5mm, respectively). This is a desirable feature in stiffness driven design but, G-XLam panels possess a high slenderness ratio, which presents a structural challenge in overcoming buckling.
Nevertheless, potential engineering applications for G-XLam panels include sandwich panels and stressed skin structures (e.g. monocoques, where thin but very stiff layers are separated by a core or internal structure that increases the second moment of area and reduces buckling.
EBPs such as these G-XLam panels present a new approach to the use of bamboo in structural applications, where bamboo is not seen as substitute, but a complementary material that in combination with wood and/or lightweight cores can provide the required stiffness with reduced cross-sections.
Further testing, research and understanding of the mechanical behaviour of EBPs is required, together with the optimisation of current manufacturing processes and their incorporation within timber standards for structural design.
[edit] Related articles on Designing Buildings Wiki
- Bamboo.
- Bamboo flooring.
- Cedar.
- Click and lock flooring.
- Cross laminated timber.
- Glulam.
- Hex House project.
- Laminated veneer lumber LVL.
- Lime wood.
- Madrid Barajas Airport.
- Modified wood.
- Plywood.
- Skyfarm.
- Softwood.
- Taipei 101.
- Timber.
- Timber vs wood.
- Types of timber.
[edit] External references
[1] Delft University of Technology, “IDEMAT database.” Faculty of Deisgn, Engineering and Production, Delft, 2016.
[2] G. P. Hammond and C. I. Jones, “Embodied energy and carbon in construction materials,” Proceedings of the Institution of Civil Engineers - Energy, vol. 161, pp. 87–98, 2008.
[3] H. F. Archila, “Thermo-hydro-mechanically modified cross-laminated Guadua-bamboo panels,” PhD Thesis, University of Bath, 2015.
[4] H. F. Archila, D. Brandon, M. P. Ansell, P. Walker, and G. A. Ormondroyd, “Evaluation of the mechanical properties of cross laminated bamboo panels by digital image correlation and finite element modelling .,” in WCTE 2014, World Conference on Timber Engineering, 2014, p. 43.
[5] Mayr-Melnhof Kaufmann Group, “Manual Cross-laminated timber panels M1 BSP cross plan,” Austria, 2009.
[6] D. Trujillo and H. F. Archila, “Engineered bamboo and bamboo engineering,” High Wycombe, Buckinghamshire, HP14 4ND, UK, 2016.
Featured articles and news
Do you take the lead in a circular construction economy?
Help us develop and expand this wiki as a resource for academia and industry alike.
Warm Homes Plan Workforce Taskforce
Risks of undermining UK’s energy transition due to lack of electrotechnical industry representation, says ECA.
Cost Optimal Domestic Electrification CODE
Modelling retrofits only on costs that directly impact the consumer: upfront cost of equipment, energy costs and maintenance costs.
The Warm Homes Plan details released
What's new and what is not, with industry reactions.
Could AI and VR cause an increase the value of heritage?
The Orange book: 2026 Amendment 4 to BS 7671:2018
ECA welcomes IET and BSI content sign off.
How neural technologies could transform the design future
Enhancing legacy parametric engines, offering novel ways to explore solutions and generate geometry.
Key AI related terms to be aware of
With explanations from the UK government and other bodies.
From QS to further education teacher
Applying real world skills with the next generation.
A guide on how children can use LEGO to mirror real engineering processes.
Data infrastructure for next-generation materials science
Research Data Express to automate data processing and create AI-ready datasets for materials research.
Wired for the Future with ECA; powering skills and progress
ECA South Wales Business Day 2025, a day to remember.
AI for the conservation professional
A level of sophistication previously reserved for science fiction.
Biomass harvested in cycles of less than ten years.
An interview with the new CIAT President
Usman Yaqub BSc (Hons) PCIAT MFPWS.
Cost benefit model report of building safety regime in Wales
Proposed policy option costs for design and construction stage of the new building safety regime in Wales.
Do you receive our free biweekly newsletter?
If not you can sign up to receive it in your mailbox here.
























