Principles of enclosure
‘Enclosure’ is the term given to any part of a building that physically separates the external from the interior environment. It is often referred to as the ‘building envelope’, although ‘enclosure’ is considered the more precise term.
Human physiology is capable of tolerating only a narrow range of environmental conditions. Beyond this range, health and wellbeing are compromised. Through the materialisation of volumes, architecture is able to create enclosed spaces in the form of structures. A building consists of a collection of spaces bounded by separators of the interior environment, and separators of the exterior environment (the enclosure).
Where exactly the enclosure begins and the exterior environment stops can sometimes be unclear, such as in the case of ‘buffer spaces’ such as garages, screened porches, attics or vented crawlspaces.
The physical components of the building enclosure include:
- The roof system.
- The above-grade wall system (including windows and doors).
- The below-grade wall system.
- The base floor system.
The principles of building enclosure were defined by the building scientist Neil Hucheon in 1963:
- Strength and rigidity.
- Control of heat flow.
- Control of air flow.
- Control of water vapour flow.
- Control of liquid water movement.
- Stability and durability of materials.
- Fire.
- Aesthetic considerations.
- Cost.
In addition to Hutcheon’s principles, there are also considerations relating to the natural phenomena occurring in the external world, and the functions required. Some of the environmental phenomena, or ‘loadings’, that can impact on enclosure include:
- Gravity (i.e. structural loads).
- Climate and weather.
- Seismic forces.
- Noise and vibration.
- Soil type.
- Topography.
- Organic agents (i.e. aerobic life forms such as insects and mould).
- Inorganic agents (i.e. natural and artificial substances such as radon and methane).
The general functions of the building enclosure may be divided into four areas:
- Support: To support, resist and transfer all structural forms of loading imposed by the interior and exterior environments.
- Control: To control, air transfer, heat, sound, access and security, privacy, the provision of views and daylight, and so on.
- Finish: To finish the enclosure surfaces in terms of visual, aesthetic, durability, and so on.
- Distribute: To distribute services or utilities such as electricity, communications, water, and so on.
Generally, enclosures are either monolithic or composite assemblies. Monolithic enclosures involve a single material acting as the structure, the cladding and interior finish, such as load-bearing masonry. In composite assemblies, separate materials or combinations are assigned critical control functions, such as control of heat transfer or air leakage.
In general terms, enclosure types include can be categorised as the following:
- Compact or distributed.
- High rise or low rise.
- Permeable or impermeable.
- Transparent or opaque.
- Passive or active.
- Massive or lightweight.
- Temporary or permanent.
- Single or multiple units.
- Hybrids: Combinations of the above.
NB Urban Design Guidelines for Victoria, published by the State of Victoria (Australia) in 2016, defines enclosure (or 'sense of enclosure') as: ‘Where the building frontage height, street width and street tree canopy creates a feeling of a contained space within the street.’
[edit] Related articles on Designing Buildings Wiki
- Airtight.
- Building design.
- Building pathology.
- Building technology.
- Concept architectural design.
- Fabric structures.
- Structure definition.
- The building as climate modifier.
- The development of structural membranes.
- The history of fabric structures.
- Weathertight.
[edit] External references
- Building Science - The building enclosure revised.
- Canadian Architect - Principles of enclosure.
Featured articles and news
Professional practical experience for Architects in training
The long process to transform the nature of education and professional practical experience in the Architecture profession following recent reports.
A people-first approach to retrofit
Moving away from the destructive paradigm of fabric-first.
International Electrician Day, 10 June 2025
Celebrating the role of electrical engineers from André-Marie Amperè, today and for the future.
New guide for clients launched at Houses of Parliament
'There has never been a more important time for clients to step up and ...ask the right questions'
The impact of recycled slate tiles
Innovation across the decades.
EPC changes for existing buildings
Changes and their context as the new RdSAP methodology comes into use from 15 June.
Skills England publishes Sector skills needs assessments
Priority areas relating to the built environment highlighted and described in brief.
BSRIA HVAC Market Watch - May 2025 Edition
Heat Pump Market Outlook: Policy, Performance & Refrigerant Trends for 2025–2028.
Committing to EDI in construction with CIOB
Built Environment professional bodies deepen commitment to EDI with two new signatories: CIAT and CICES.
Government Grenfell progress report at a glance
Line by line recomendation overview, with links to more details.
An engaging and lively review of his professional life.
Sustainable heating for listed buildings
A problem that needs to be approached intelligently.
50th Golden anniversary ECA Edmundson apprentice award
Deadline for entries has been extended to Friday 27 June, so don't miss out!
CIAT at the London Festival of Architecture
Designing for Everyone: Breaking Barriers in Inclusive Architecture.
Mixed reactions to apprenticeship and skills reform 2025
A 'welcome shift' for some and a 'backwards step' for others.