Principles of enclosure
‘Enclosure’ is the term given to any part of a building that physically separates the external from the interior environment. It is often referred to as the ‘building envelope’, although ‘enclosure’ is considered the more precise term.
Human physiology is capable of tolerating only a narrow range of environmental conditions. Beyond this range, health and wellbeing are compromised. Through the materialisation of volumes, architecture is able to create enclosed spaces in the form of structures. A building consists of a collection of spaces bounded by separators of the interior environment, and separators of the exterior environment (the enclosure).
Where exactly the enclosure begins and the exterior environment stops can sometimes be unclear, such as in the case of ‘buffer spaces’ such as garages, screened porches, attics or vented crawlspaces.
The physical components of the building enclosure include:
- The roof system.
- The above-grade wall system (including windows and doors).
- The below-grade wall system.
- The base floor system.
The principles of building enclosure were defined by the building scientist Neil Hucheon in 1963:
- Strength and rigidity.
- Control of heat flow.
- Control of air flow.
- Control of water vapour flow.
- Control of liquid water movement.
- Stability and durability of materials.
- Fire.
- Aesthetic considerations.
- Cost.
In addition to Hutcheon’s principles, there are also considerations relating to the natural phenomena occurring in the external world, and the functions required. Some of the environmental phenomena, or ‘loadings’, that can impact on enclosure include:
- Gravity (i.e. structural loads).
- Climate and weather.
- Seismic forces.
- Noise and vibration.
- Soil type.
- Topography.
- Organic agents (i.e. aerobic life forms such as insects and mould).
- Inorganic agents (i.e. natural and artificial substances such as radon and methane).
The general functions of the building enclosure may be divided into four areas:
- Support: To support, resist and transfer all structural forms of loading imposed by the interior and exterior environments.
- Control: To control, air transfer, heat, sound, access and security, privacy, the provision of views and daylight, and so on.
- Finish: To finish the enclosure surfaces in terms of visual, aesthetic, durability, and so on.
- Distribute: To distribute services or utilities such as electricity, communications, water, and so on.
Generally, enclosures are either monolithic or composite assemblies. Monolithic enclosures involve a single material acting as the structure, the cladding and interior finish, such as load-bearing masonry. In composite assemblies, separate materials or combinations are assigned critical control functions, such as control of heat transfer or air leakage.
In general terms, enclosure types include can be categorised as the following:
- Compact or distributed.
- High rise or low rise.
- Permeable or impermeable.
- Transparent or opaque.
- Passive or active.
- Massive or lightweight.
- Temporary or permanent.
- Single or multiple units.
- Hybrids: Combinations of the above.
NB Urban Design Guidelines for Victoria, published by the State of Victoria (Australia) in 2016, defines enclosure (or 'sense of enclosure') as: ‘Where the building frontage height, street width and street tree canopy creates a feeling of a contained space within the street.’
[edit] Related articles on Designing Buildings Wiki
- Airtight.
- Building design.
- Building pathology.
- Building technology.
- Concept architectural design.
- Fabric structures.
- Structure definition.
- The building as climate modifier.
- The development of structural membranes.
- The history of fabric structures.
- Weathertight.
[edit] External references
- Building Science - The building enclosure revised.
- Canadian Architect - Principles of enclosure.
Featured articles and news
One of the most impressive Victorian architects. Book review.
RTPI leader to become new CIOB Chief Executive Officer
Dr Victoria Hills MRTPI, FICE to take over after Caroline Gumble’s departure.
Social and affordable housing, a long term plan for delivery
The “Delivering a Decade of Renewal for Social and Affordable Housing” strategy sets out future path.
A change to adoptive architecture
Effects of global weather warming on architectural detailing, material choice and human interaction.
The proposed publicly owned and backed subsidiary of Homes England, to facilitate new homes.
How big is the problem and what can we do to mitigate the effects?
Overheating guidance and tools for building designers
A number of cool guides to help with the heat.
The UK's Modern Industrial Strategy: A 10 year plan
Previous consultation criticism, current key elements and general support with some persisting reservations.
Building Safety Regulator reforms
New roles, new staff and a new fast track service pave the way for a single construction regulator.
Architectural Technologist CPDs and Communications
CIAT CPD… and how you can do it!
Cooling centres and cool spaces
Managing extreme heat in cities by directing the public to places for heat stress relief and water sources.
Winter gardens: A brief history and warm variations
Extending the season with glass in different forms and terms.
Restoring Great Yarmouth's Winter Gardens
Transforming one of the least sustainable constructions imaginable.
Construction Skills Mission Board launch sector drive
Newly formed government and industry collaboration set strategy for recruiting an additional 100,000 construction workers a year.
New Architects Code comes into effect in September 2025
ARB Architects Code of Conduct and Practice available with ongoing consultation regarding guidance.
Welsh Skills Body (Medr) launches ambitious plan
The new skills body brings together funding and regulation of tertiary education and research for the devolved nation.
Paul Gandy FCIOB announced as next CIOB President
Former Tilbury Douglas CEO takes helm.