Building science
'Building science' or 'building physics' is a broad term that refers to our knowledge of the physical behaviour of buildings and their impact on energy efficiency, comfort, health, safety, durability and so on. It is the application of the principles of physics to the built environment. An understanding of building science is vital if the design of buildings is to be optimised and the performance of buildings maximised.
The National Institute of Building Sciences (USA) propose that building science applies empirical techniques to design problems, and explains why buildings work and why they fail. They suggest that modern building science needs to consider buildings as systems, '…an integrated assembly of interacting elements, designed to carry out cooperatively a predetermined function.' [Gibson 1960]. This is important as buildings are generally complex, one-off prototypes and it is only by considering them as a series of interacting systems that standardised analysis becomes possible.
Building science is concerned with the full life cycle of buildings from planning and design through to construction, facilities management, building pathology, conservation and demolition. It is a collaborative process that can involve disciplines such as architecture, civil, structural and building services engineering, and specialist fields such as acoustic, lighting, and so on.
This is a broader subject area than the related discipline of building engineering physics which considers in more detail the energy performance of buildings and their indoor and outdoor environments.
Building science can be interpreted widely or narrowly, however aspects of building design that might be considered 'building science' could include:
- Climate and weather.
- Façade engineering.
- Building materials.
- Building structures.
- Passive building design.
- Heating, ventilation and air conditioning.
- Natural and artificial lighting.
- Building acoustics.
- Moisture and condensation analyses.
- Fire engineering.
- Systems integration
- Physiology and thermal comfort.
- Smart building technology.
- Sustainability.
- Resilience to climate change.
- Life cycle assessment.
- Energy modelling.
[edit] Related articles on Designing Buildings Wiki
- Air conditioning.
- Building engineering physics.
- Building management systems.
- Building pathology.
- Building services engineer.
- Capillary action.
- CFD.
- Defects.
- Force.
- Heat transfer.
- HVAC.
- Life cycle assessment.
- Mechanical and electrical (M&E).
- Mechanical ventilation.
- Natural ventilation.
- Passive building design.
- Performance gap.
- Smart buildings.
- Structural principles.
- Thermal comfort.
- Utilities.
Featured articles and news
Welsh and Scottish 2026 elections
Manifestos for the built environment for upcoming same May day elections.
Advancing BIM education with a competency framework
“We don’t need people who can just draw in 3D. We need people who can think in data.”
Guidance notes to prepare for April ERA changes
From the Electrical Contractors' Association Employee Relations team.
Significant changes to be seen from the new ERA in 2026 and 2027, starting on 6 April 2026.
First aid in the modern workplace with St John Ambulance.
Ireland's National Residential Retrofit Plan
Staged initiatives introduced step by step.
Solar panels, pitched roofs and risk of fire spread
60% increase in solar panel fires prompts tests and installation warnings.
Modernising heat networks with Heat interface unit
Why HIUs hold the key to efficiency upgrades.
Reflecting on the work of the CIOB Academy
Looking back on 2025 and where it's going next.
Procurement in construction: Knowledge hub
Brief, overview, key articles and over 1000 more covering procurement.
Sir John Betjeman’s love of Victorian church architecture.
Exchange for Change for UK deposit return scheme
The UK Deposit Management Organisation established to deliver Deposit Return Scheme unveils trading name.
A guide to integrating heat pumps
As the Future Homes Standard approaches Future Homes Hub publishes hints and tips for Architects and Architectural Technologists.
BSR as a standalone body; statements, key roles, context
Statements from key figures in key and changing roles.
Resident engagement as the key to successful retrofits
Retrofit is about people, not just buildings, from early starts to beyond handover.




















