Micropiles
Foundations provide support for structures, transferring their load to layers of soil or rock that have sufficient bearing capacity and suitable settlement characteristics. Very broadly, foundations can be categorised as shallow foundations or deep foundations.
Pile foundations are deep foundations. They are formed by long, slender, columnar elements typically made from steel or reinforced concrete or sometimes timber. A foundation is described as piled when its depth is more than three times its breadth.
Micropiles are piles that have a relatively small diameter, typically in the range of 100-250 mm. They can also be described as:
- Minipiles (generally mini piles are smaller than micro piles)
- Pin piles.
- Needle piles.
- Root piles.
- Lightweight piles.
The size of the pile is determined by the load-bearing capacity of the ground and the size of rig that is able to access the piling location.
They can be driven or screw piles and tend to be used where access is restricted, for example underpinning structures affected by settlement. They were first used in Italy in the 1950s in response to the demand for innovative underpinning techniques that could be used for historic buildings and monuments.
They are particularly suited to:
- Shallow bedrock.
- Boulders and cavities.
- Immediate hard strata.
- Where underpinning is required, such as for foundations adjacent to planned excavations.
Micropiles can also be used in combination with other ground modification techniques where complex site conditions and design specifications are present.
In a typical installation process a high-strength steel casing is drilled down to the design depth. A reinforcing bar is inserted and high-strength cement grout pumped into the casing. The casing may extend along the full length of the pile, or it may only extend along part of the length of the pile, with the reinforcing bar extending along the full length.
Drilling may be achieved by a removable bit, or by a sacrificial head to the steel casing.
In some cases, the steel casing may be removed, or partially removed, and further grout pumped in at pressure.
They can be installed in restricted access sites where there is low headroom by the use of lagging. This is where wood, steel or precast concrete panels are inserted behind the pile as the excavation proceeds so as to resist the load of the retained soil and transfer it to the pile. Greater capacity can be achieved by post-grouting within the bond length to increase frictional forces with surrounding soils.
There are advantages of micropiles include:
- They are small and relatively light.
- They are relatively inexpensive.
- They can be installed through almost any ground condition, making them suitable for installation in environmentally-challenging conditions, such as for wind turbine towers.
- The limited vibration and noise causes little disturbance.
- Piling rigs can be low-emission or even electrically driven.
- They can be installed while avoiding existing utilities, meaning that expensive utility re-routing is not required.
- They can be installed close to existing walls with limited headroom and congested site conditions.
- They have a high load capacity and an ability to resist compressive, tensile and lateral loads.
[edit] Related articles on Designing Buildings
- Bored piles.
- Caisson.
- Cofferdam.
- Continuous flight auger piles.
- Driven piles.
- Footings.
- Foundations.
- Geothermal pile foundations.
- Ground anchor.
- Groundworks.
- Grouting in civil engineering.
- Pad foundation.
- Pile cap.
- Pile foundations.
- Raft foundation.
- Retaining walls.
- Screw piles.
- Sheet piles.
- Types of pile foundation.
- Underpinning.
- Vibro-compaction.
- Vibro-replacement.
Featured articles and news
What they are, how they work and why they are popular in many countries.
Plastic, recycling and its symbol
Student competition winning, M.C.Esher inspired Möbius strip design symbolising continuity within a finite entity.
Do you take the lead in a circular construction economy?
Help us develop and expand this wiki as a resource for academia and industry alike.
Warm Homes Plan Workforce Taskforce
Risks of undermining UK’s energy transition due to lack of electrotechnical industry representation, says ECA.
Cost Optimal Domestic Electrification CODE
Modelling retrofits only on costs that directly impact the consumer: upfront cost of equipment, energy costs and maintenance costs.
The Warm Homes Plan details released
What's new and what is not, with industry reactions.
Could AI and VR cause an increase the value of heritage?
The Orange book: 2026 Amendment 4 to BS 7671:2018
ECA welcomes IET and BSI content sign off.
How neural technologies could transform the design future
Enhancing legacy parametric engines, offering novel ways to explore solutions and generate geometry.
Key AI related terms to be aware of
With explanations from the UK government and other bodies.
From QS to further education teacher
Applying real world skills with the next generation.
A guide on how children can use LEGO to mirror real engineering processes.
Data infrastructure for next-generation materials science
Research Data Express to automate data processing and create AI-ready datasets for materials research.
Wired for the Future with ECA; powering skills and progress
ECA South Wales Business Day 2025, a day to remember.
AI for the conservation professional
A level of sophistication previously reserved for science fiction.
Biomass harvested in cycles of less than ten years.
An interview with the new CIAT President
Usman Yaqub BSc (Hons) PCIAT MFPWS.
Cost benefit model report of building safety regime in Wales
Proposed policy option costs for design and construction stage of the new building safety regime in Wales.
Do you receive our free biweekly newsletter?
If not you can sign up to receive it in your mailbox here.
























