Energy Efficient Design - Addressing Thermal Bridging in Steel Lintels
If buildings are designed to meet Part L regulations and carbon reduction targets, then it is essential specifiers understand the impact of thermal bridging. With a traditional steel lintel potentially creating a major thermal bridge in a building, correct lintel specification can have a significant impact on a building's fabric efficiency.
Ben Cheetham, National Specification Manager at Keystone Lintels, looks at the detailing around junctions and how this important structural element can be designed to be more thermally efficient and with better buildability.
Contents |
[edit] Introduction
Preventing heat loss by addressing thermal bridging is growing in importance; particularly with the UK government aiming to create more energy efficient homes and attain its ultimate goal: carbon-neutrality by 2050. Indeed, research carried out by BRE found that thermal bridging can account for up to 30% of heat loss from buildings.
[edit] Explaining ‘the bridge’
A thermal bridge is a localised area in the thermal envelope of a building where there is increased heat loss compared to the surrounding area. For example, where a traditional steel lintel spans a window or door opening and interrupts the insulation layer in the cavity wall, a clear path for heat to escape is provided and the thermal efficiency is compromised.
Non repeating thermal bridges such as these are assessed using thermal modelling software, and their impacts on the building’s energy performance must be calculated independently in addition to U-values.
[edit] Heat loss and lintels
The majority of lintels in domestic-scale dwellings are made from steel for a number of reasons, such as providing more design flexibility and easier onsite handling due to their lightweight design compared to other alternatives. However, steel has a high conductivity value, and with lintels typically spanning across long lengths in a typical build, it’s no surprise they can have a significant impact on heat loss via thermal bridging. Therefore, taking into account the thermal performance of lintels at design and specification stage is more important than ever.
A lintel design which incorporates a thermal break will outperform and be much more thermally efficient than a standard lintel. For instance, Keystone’s Hi-therm+ lintels use a patented combination of a polymer isolater and galvanised steel to bond the internal and external walls together by spanning the intervening gap. The polymer isolater provides a powerful thermal break in the lintel and virtually eliminates this key thermal bridge.
The Hi-therm Lintel has a low thermal conductivity with a Psi value of 0.03 to 0.06 W/m.K.
[edit] Fabric first
A fabric-first approach has for some time been supported by the housebuilding industry. Its approach factors in a number of aspects such as:
- Having high levels of thermal insulation and excellent air tightness levels.
- Maximising building orientation for solar gains,
- Designing out thermal bridging.
The benefits of this approach as a first step in building design are increasingly widely recognised, and ongoing research continues to reinforce the significant positive impact this approach can have economically, environmentally and socially.
The reduction in CO2 emissions achieved through fabric measures is built-in for the life of the building and therefore can ensure that the energy demand and CO2 emissions of a site remains low.
With junctions above openings in buildings particularly vulnerable to heat loss through thermal bridging, details and structural elements such as lintels help to create energy efficient buildings. Adopting a fabric-first approach in the first instance will help the building continue to perform as-designed and go some way to maximising the overall efficiency of UK homes ensuring they are well positioned for future regulatory changes.
For more information contact Keystone Lintels.
--Keystone LINTELS 15:43, 28 Aug 2020 (BST)
[edit] Related articles on Designing Buildings Wiki
Featured articles and news
Shading for housing, a design guide
A look back at embedding a new culture of shading.
The Architectural Technology Awards
The AT Awards 2025 are open for entries!
ECA Blueprint for Electrification
The 'mosaic of interconnected challenges' and how to deliver the UK’s Transition to Clean Power.
Grenfell Tower Principal Contractor Award notice
Tower repair and maintenance contractor announced as demolition contractor.
Passivhaus social homes benefit from heat pump service
Sixteen new homes designed and built to achieve Passivhaus constructed in Dumfries & Galloway.
CABE Publishes Results of 2025 Building Control Survey
Concern over lack of understanding of how roles have changed since the introduction of the BSA 2022.
British Architectural Sculpture 1851-1951
A rich heritage of decorative and figurative sculpture. Book review.
A programme to tackle the lack of diversity.
Independent Building Control review panel
Five members of the newly established, Grenfell Tower Inquiry recommended, panel appointed.
Welsh Recharging Electrical Skills Charter progresses
ECA progressing on the ‘asks’ of the Recharging Electrical Skills Charter at the Senedd in Wales.
A brief history from 1890s to 2020s.
CIOB and CORBON combine forces
To elevate professional standards in Nigeria’s construction industry.
Amendment to the GB Energy Bill welcomed by ECA
Move prevents nationally-owned energy company from investing in solar panels produced by modern slavery.
Gregor Harvie argues that AI is state-sanctioned theft of IP.
Experimental AI housing target help for councils
Experimental AI could help councils meet housing targets by digitising records.
BSRIA Occupant Wellbeing survey BOW
Occupant satisfaction and wellbeing tool inc. physical environment, indoor facilities, functionality and accessibility.