Mineral wool
Mineral wool is a wide-ranging term which describes fibrous, spun yarn materials used as insulation in construction and other sectors. Depending on the mineral used and the process employed, it also goes by names, such as glass wool, stone wool, slag wool, mineral fibre (or fiber), mineral cotton, man-made vitreous fibre and man-made mineral fibre.
Although first produced commercially in 1871 in Osnabruck, Germany, the rock wool insulation industry was initiated in the US in 1897 when Charles Hall was able to convert molten rock into fibres.
Mineral wool applications in construction include:
- As thermal insulation: in masonry cavity-walls, timber frame construction, and for roof spaces, also, in stud-partition walls and flat roofs, as well as for pipework and ductwork.
- As acoustic insulation to resist the transmission of sound through partition walls and storey floors.
- As fire insulation.
- To absorb water and air to help root growth and nutrient uptake in hydroponics – ie, growing plants without soil using only solutions and minerals.
Properties:
- Because it is porous with an open fibre structure, mineral wool traps air, making it highly efficient as an insulation material. A representative lambda (λ) value for it would be around 0.03W-0.04/mK.
- The wool’s porous nature also makes it a good noise absorber. It is also incombustible and does not fuel the spread of flame.
- Mineral wool is not prone to thermal ageing, which means it can retain its insulating properties for as long as it is in service.
- Mineral wool does not sustain vermin and is highly resistant to the growth of mould, fungi or bacteria.
- Glass and rock mineral wool insulation may be completely non-combustible (Euroclass A1 fire rating (non-combustible material’)) and can slow the spread of flame – this can allow a building’s occupants extra time to escape.
- Mineral wool also has low thermal conductivity and resists the passage of sound. It is highly resistant to expansion and shrinkage which results in joints that stay as close as possible. It is also relatively inexpensive
The two main variants of mineral wool are stone wool and glass wool.
Glass wool is typically, manufactured by spinning or drawing a yarn of melted glass; a binder is used to form the glass fibres into a wool-type consistency. It can be produced as rolls, slabs, applied in-situ or sprayed.
Rock or stone wool is made from molten rock materials (such as ceramics or slag cast-offs – a by-product of the smelting process). It is made by blowing a stream of air through molten rock at a temperature of around 1,600°C. The result is very fine strands which are combined to create a wool-type material; alternatively, stone wool can be made by a process analogous to that of making candy floss – the molten rock is spun at high speeds and the threads drawn off. Typically, they will have a diameter in the range of 2-6 microns (millionths of a metre). They are then amalgamated to produce the characteristic woolly structure which can be compressed into boards, mineral wool batts or other forms. In its loose form, the wool can be blown into cavity walls and roof void spaces.
[edit] Related articles on Designing Buildings Wiki
- Acoustic insulation
- Acoustic insulation market
- Advice for External Wall Insulation (EWI) systems with a render or brick-slip finish
- Aerogel insulation for buildings
- BR 135 Fire Performance of external thermal insulation for walls of multi-storey buildings
- BREEAM Insulation
- Cavity wall insulation
- Designing out unintended consequences when applying solid wall insulation FB 79
- External wall insulation
- Floor insulation
- Insulation for ground floors
- Loft insulation ruling
- Reducing thermal bridging at junctions when designing and installing solid wall insulation FB 61
- Roof insulation
- Solid wall insulation
- Solid Wall Insulation: Unlocking demand and driving up standards
- Sound insulation in buildings
- Specifying insulation for inverted roofs
- Ten facts about Expanded Polystyrene (EPS) insulation to help specifiers
- Thermal insulation for buildings
- Types of insulation
- Understanding Insulation and the Part It Plays in Building Regulations
- Wall insulation and moisture risk
Featured articles and news
IHBC share news on the Social Housing Retrofit Accelerator
To support in Social Housing Decarbonisation Fund bids
A change to adoptive architecture.
A must read for all built environment professionals.
A sun, tide, mass or scratch dial.
A brief description of time in the sun.
ICE Trustee Board update June 2022
Given by ICE President Ed McCann.
Artificial intelligence and project management
Two new research reports published by APM.
Association for Project Management membership offer
50% off APM Associate membership for Designing Buildings users.
Building safety, a shifting landscape for professionals
A commentary from the insurance perspective.
In brief with further links.
Walter Segal: self-built architect
A definitive book on a pioneer of green architecture.
Funding for heritage on the high street
Using heritage as a catalyst for reviving historic centres.
Commonwealth Heads of Government Meeting update.
Declaration prioritising sustainable urbanisation adopted.
A small hidden, often distant but key building component.
Some brief words about the actuator.
CIAT Chief Executive steps down.
After 34 years at the Institute.
Volunteer opportunity launched by the ICE
To support the next generation of engineers.
Provisional findings show illegal cartels in the industry.
CIAT reporting from the Competition and Markets Authority.
Making sustainable construction number one priority.
The future of construction report.
Interview with ECA CEO.
Many provisions came into force on June 28, 2022.
With room to expand.
An information packed session at the BSRIA conference.
Refurbishment, Energy Efficiency, Indoor air and process.
Create a profile, write informed product articles and share.
Aluminium Composite Panels (ACP) is one example.
We are indeed now 10 years old, so go on and be bold !
Write about something you know, help us build and grow !