Hydroelectricity
Hydroelectricity is electricity generated by hydropower, that is, power derived from the kinetic energy of falling or flowing water. It can be generated from streams, lakes and rivers or man-made structures such as dams, lagoons and reservoirs.
Hydroelectricity relies on water, a clean and renewable source of energy. Water that has been used to generate electricity is naturally recycled by the ‘water cycle’ through which water evaporates, forming clouds that then rain on the Earth, restarting the cycle.
The technology is well-proven and reliable, there is little use of fuel in generation, and so emissions are low. However, the capital costs are high, it can require inundation of land and so cause loss of habitats, and in some cases, displacement of local populations.
Hydropower systems are generally dependent upon precipitation and elevation changes. Large elevation changes and high precipitation levels are necessary to generate substantial quantities of electricity. Generation depends on the gravitational force of flowing water moving downstream. Hydropower can be seen as the conversion of the potential kinetic energy of water at a higher level, falling to yield kinetic energy that drives a turbine, which in turn produces electricity.
This can require the creation of a large, high reservoir of water, sometimes by damming a river. In this case, water is then channelled through tunnels in the dams and energy from the water causes turbines to turn which generates electricity. Engineers can regulate the amount of water passing through the dam. The process of controlling this flow of water is called the intake system. Spillway structures allow water to flow directly into the body of water below the dam, preventing damage.
The amount of energy extracted from the water depends on the available water volume and the difference in height between the turbines and the elevated source. This height difference is known as the hydraulic head.
Hydroelectric systems include:
- Storage schemes. These make use of a dam that holds water in a reservoir.
- Run-of-river schemes. These use water's natural flow to drive a turbine.
- Pumped storage.This incorporates two reservoirs. Using electricity, water can be pumped from a lower reservoir to a higher one at times of low demand. This water is then released, driving the turbines to create power in order to meet peak demand requirements.
- Tidal schemes, which exploit the changing level of sea water as a result of tides.
Both storage and run-of-river schemes can be diversions, channelling water from lakes or rivers or dammed reservoirs to powerhouses containing turbines.
Three main categories define the output of hydroelectricity:
- Micro-scale capacity. A hydro plant producing less than 50 kilowatts (kW).
- Small-scale capacity. A hydro plant producing less than 5 megawatts (MW).
- Large-scale capacity. A hydro plant producing more than 5 megawatts (MW).
Hydro-electric systems below 100kW are sometimes considered to constitute microgeneration.
Once a hydroelectric system has been installed, it can last for 40-50 years, or longer if well maintained. Debris, floods and droughts can potentially cause damage to hydroelectric systems.
China is the largest producer of hydroelectricity, followed by Canada, Brazil, and the United States (Ref Energy Information Administration). According to the U.S. Geological Survey (USGS), approximately two-thirds of the economically feasible potential remains to be developed.
The UK Government suggests that ‘The UK currently (2011) generates about 1.5% of its electricity from hydroelectric schemes. Although further large-scale development potential is limited, there is scope for exploiting our remaining small-scale hydro resources in a sustainable way.’ Ref Gov.uk Harnessing hydroelectric power.
[edit] Related articles on Designing Buildings Wiki
- Allowable solutions.
- Biomass.
- Cardiff tidal lagoon.
- Domestic micro-generation.
- Dove Stone Hydropower.
- Earth-to-air heat exchangers.
- Energy storage.
- Feed in tariff.
- Fuel cell.
- Geothermal energy.
- Ground energy options.
- Hydropower.
- Large scale solar thermal energy.
- Marine energy.
- Natural gas.
- Not a choice between renewables and nuclear - we need both.
- Oil - a global perspective.
- Power generation.
- Renewable energy.
- Renewable heat incentive.
- Shale gas.
- Solar photovoltaics
- Solar thermal systems.
- Swing bridge.
- Sustainable development: energy challenge.
- The Future of Electricity in Domestic Buildings.
- Tidal lagoon power.
- Types of fuel.
- Why the UK needs to support emerging tech like energy storage.
- Wind Energy in the United Kingdom.
- Zero carbon homes.
- Zero carbon non-domestic buildings.
Featured articles and news
Deputy editor of AT, Tim Fraser, discusses the newly formed society with its current chair, Chris Halligan MCIAT.
Barratt Lo-E passivhaus standard homes planned enmasse
With an initial 728 Lo-E homes across two sites and many more planned for the future.
Government urged to uphold Warm Homes commitment
ECA and industry bodies write to Government concerning its 13.2 billion Warm Homes manifesto commitment.
Places of Worship in Britain and Ireland, 1929-1990. Book review.
The emancipation of women in art.
CIOB Construction Manager of the Year 2025
Just one of the winners at the CIOB Awards 2025.
Call for independent National Grenfell oversight mechanism
MHCLG share findings of Building Safety Inquiry in letter to Secretary of State and Minister for Building Safety.
The Architectural Technology Awards
AT Awards now open for this the sixth decade of CIAT.
50th Golden anniversary ECA Edmundson awards
Deadline for submissions Friday 30 May 2025.
The benefits of precast, off-site foundation systems
Top ten benefits of this notable innovation.
Encouraging individuals to take action saving water at home, work, and in their communities.
Takes a community to support mental health and wellbeing
The why of becoming a Mental Health Instructor explained.
Mental health awareness week 13-18 May
The theme is communities, they can provide a sense of belonging, safety, support in hard times, and a sense purpose.
Mental health support on the rise but workers still struggling
CIOB Understanding Mental Health in the Built Environment 2025 shows.
Design and construction material libraries
Material, sample, product or detail libraries a key component of any architectural design practice.
Construction Products Reform Green Paper and Consultation
Still time to respond as consultation closes on 21 May 2025.
Resilient façade systems for smog reduction in Shanghai
A technical approach using computer simulation and analysis of solar radiation, wind patterns, and ventilation.