Last edited 20 Nov 2020


Hydroelectricity is electricity generated by hydropower, that is, power derived from the kinetic energy of falling or flowing water. It can be generated from streams, lakes and rivers or man-made structures such as dams, lagoons and reservoirs.

Hydroelectricity relies on water, a clean and renewable source of energy. Water that has been used to generate electricity is naturally recycled by the ‘water cycle’ through which water evaporates, forming clouds that then rain on the Earth, restarting the cycle.

The technology is well-proven and reliable, there is little use of fuel in generation, and so emissions are low. However, the capital costs are high, it can require inundation of land and so cause loss of habitats, and in some cases, displacement of local populations.

Hydropower systems are generally dependent upon precipitation and elevation changes. Large elevation changes and high precipitation levels are necessary to generate substantial quantities of electricity. Generation depends on the gravitational force of flowing water moving downstream. Hydropower can be seen as the conversion of the potential kinetic energy of water at a higher level, falling to yield kinetic energy that drives a turbine, which in turn produces electricity.

This can require the creation of a large, high reservoir of water, sometimes by damming a river. In this case, water is then channelled through tunnels in the dams and energy from the water causes turbines to turn which generates electricity. Engineers can regulate the amount of water passing through the dam. The process of controlling this flow of water is called the intake system. Spillway structures allow water to flow directly into the body of water below the dam, preventing damage.

The amount of energy extracted from the water depends on the available water volume and the difference in height between the turbines and the elevated source. This height difference is known as the hydraulic head.

Hydroelectric systems include:

Both storage and run-of-river schemes can be diversions, channelling water from lakes or rivers or dammed reservoirs to powerhouses containing turbines.

Three main categories define the output of hydroelectricity:

Hydro-electric systems below 100kW are sometimes considered to constitute microgeneration.

Once a hydroelectric system has been installed, it can last for 40-50 years, or longer if well maintained. Debris, floods and droughts can potentially cause damage to hydroelectric systems.

China is the largest producer of hydroelectricity, followed by Canada, Brazil, and the United States (Ref Energy Information Administration). According to the U.S. Geological Survey (USGS), approximately two-thirds of the economically feasible potential remains to be developed.

The UK Government suggests that ‘The UK currently (2011) generates about 1.5% of its electricity from hydroelectric schemes. Although further large-scale development potential is limited, there is scope for exploiting our remaining small-scale hydro resources in a sustainable way.’ Ref Harnessing hydroelectric power.

[edit] Related articles on Designing Buildings Wiki

Designing Buildings Anywhere

Get the Firefox add-on to access 20,000 definitions direct from any website

Find out more Accept cookies and
don't show me this again