Earth to air heat exchangers
Contents |
[edit] Introduction
An earth-to-air heat exchanger draws ventilation supply air through buried ducts or tubes. As the temperature of the ground below 3m is practically constant, it substantially reduces ambient air temperature fluctuations. It therefore provides space conditioning throughout the year, with the incoming air being heated in the winter and cooled in the summer by means of earth coupling.
[edit] System options
Systems can be driven by natural stack ventilation, but usually require mechanical ventilation. In some cases air is circulated via air handling units, allowing filtering and supplementary heating/cooling. A simple controller can be used to monitor inlet and outlet temperatures, as well as indoor air temperatures. Ground coupling ducts or tubes can be of plastic, concrete or clay – the material choice is of little consequence thermally due to the high thermal resistance of the ground.
Earth-to-air heat exchangers are suited to mechanically ventilated buildings with a moderate cooling demand, located in climates with a large temperature differential between summer and winter, and between day and night. Location of the ducts in sand or gravel below the water level, where there is moving ground water, gives the best performance, however, the presence of ground water involves extensive sealing precautions.
[edit] Size and output
The optimum pipe length is a function of pipe diameter and air velocity. Small pipe diameters of between 200 and 300mm are thermally more efficient. Pipes should be buried at a minimum
depth of 2m and separated by 1-2m to allow heat dissipation. The optimum air velocity is typically 2m/s.
Under constant load, the cooling capacity of the ground may become exhausted and, therefore, generally it is not possible to meet high loads. With high loads, two separate duct systems could be considered – one for use in the morning and one for use in the afternoon.
A bypass can be used to improve the performance of the system during periods when the ambient air temperature can meet the cooling requirements. In unoccupied periods when the ambient air temperature falls below the surface temperature in the ducts, night cooling can be used to pre-cool the system.
The ground temperature is based on ‘undisturbed’ conditions. When the ducts are installed beneath the building, or even within a built up area, this will be affected substantially. The effect that the duct has on the ground temperature also needs to be considered. Optimisation of the design requires a complete thermal simulation of the system.
In principle, these are low-cost systems – the excavation is the major part of the installation cost. Maintenance is minimal, but regular inspection and cleaning of the ducts is recommended.
[edit] Summary
Earth-to-air heat exchangers can be used on new buildings or refurbishments to provide free cooling in the summer and pre-heating of air in the winter. They have high capital costs, but over the life of the system can yield substantial savings.
This article was created by --Buro Happold 17 March 2013, based on a 2008 article in 'Patterns'.
[edit] Related articles
- Coefficient of Performance CoP.
- Dynamic thermal modelling of closed loop geothermal heat pump systems.
- Geothermal energy.
- Geothermal pile foundations.
- Ground energy options
- Ground preconditioning of supply air.
- Ground source heat pumps.
- Renewable energy sources: how they work and what they deliver: Part 3: Electrically driven heat pumps DG 532 3.
- Thermal labyrinths.
Featured articles and news
Do you take the lead in a circular construction economy?
Help us develop and expand this wiki as a resource for academia and industry alike.
Warm Homes Plan Workforce Taskforce
Risks of undermining UK’s energy transition due to lack of electrotechnical industry representation, says ECA.
Cost Optimal Domestic Electrification CODE
Modelling retrofits only on costs that directly impact the consumer: upfront cost of equipment, energy costs and maintenance costs.
The Warm Homes Plan details released
What's new and what is not, with industry reactions.
Could AI and VR cause an increase the value of heritage?
The Orange book: 2026 Amendment 4 to BS 7671:2018
ECA welcomes IET and BSI content sign off.
How neural technologies could transform the design future
Enhancing legacy parametric engines, offering novel ways to explore solutions and generate geometry.
Key AI related terms to be aware of
With explanations from the UK government and other bodies.
From QS to further education teacher
Applying real world skills with the next generation.
A guide on how children can use LEGO to mirror real engineering processes.
Data infrastructure for next-generation materials science
Research Data Express to automate data processing and create AI-ready datasets for materials research.
Wired for the Future with ECA; powering skills and progress
ECA South Wales Business Day 2025, a day to remember.
AI for the conservation professional
A level of sophistication previously reserved for science fiction.
Biomass harvested in cycles of less than ten years.
An interview with the new CIAT President
Usman Yaqub BSc (Hons) PCIAT MFPWS.
Cost benefit model report of building safety regime in Wales
Proposed policy option costs for design and construction stage of the new building safety regime in Wales.
Do you receive our free biweekly newsletter?
If not you can sign up to receive it in your mailbox here.






















