Coefficient of Performance CoP
The Coefficient of Performance (CoP) is a ratio that describes the efficiency of a system. It is based on the relationship between the power (kW) input to a system compared to the amount of power that is output.
CoP = power output / power input.
The higher the number, the more efficient the system.
In the construction industry, the term CoP is often used in relation to equipment such as heat pumps. Heat pumps transfer heat from a lower temperature source to one of a higher temperature and can be used to provide hot water, space heating, or for other applications such as heating swimming pools.
In the case of heat pumps, the CoP is the relationship between the power that is drawn from the heat pump as cooling or heat, and the power that is consumed by it.
The equation is expressed as follows:
CoP = Q/W
Where:
Typically a simple electric heater with no moving parts may convert 1 kW of electricity into 1 kW of heat, giving it a COP of 1. Whereas, a heat pump may convert 1 kW of electricity in 3 or 4 kW of heat, giving it a CoP of 3 or 4.
Rather than being generated by the pump, the heat is being moved from outside the structure to inside. The warmer the external heat source, the higher the CoP, and the less electricity required to convert it to heat output. This has advantages for the user over traditional heating systems as it significantly reduces carbon emissions and results in lower operating costs.
The CoP of a ground source heat pump is usually high because of the 'free' heat energy available from the ground through a series of buried pipes. Air source heat pumps draw in air from outside the building, and so the CoP can vary seasonally. In winter, the outside air is much colder so more electricity is required to raise the heat as required. The CoP will usually be relatively low, at around 2.5. In summer, the external air temperature is much warmer so less electricity is required, often resulting in a CoP of 4 or more.
The Seasonal Energy Efficiency Ratio (SEER) value in cooling, and the Seasonal Coefficient of Performance (SCOP) value in heating give an indication of anticipated real-life performance that takes into consideration these changes in energy efficiency over the course of a year.
SCOP is measured in accordance with the procedures in BS EN 14825:2013. The National Calculation Methodology for calculating carbon dioxide emission rates from buildings uses SCOP.
Refrigerators work by extracting heat rather than exhausting it. In this case, the equation is expressed as:
CoP = Qc/W
Where:
[edit] Related articles on Designing Buildings
- Absorption heat pump.
- Air source heat pumps.
- Combined heat and power CHP.
- Domestic heat pumps and the electricity supply system.
- Earth-to-air heat exchangers.
- Exhaust air heat pump.
- Ground source heat pumps.
- Heat exchanger.
- Heat pump.
- Heat recovery.
- Residential heat pump installations: the role of vocational education and training.
- Seasonal performance factor.
- Solar thermal heating.
- Types of domestic boiler.
- Underfloor heating.
- What is COP and EER?
- Water source heat pumps.
[edit] External resources
- Hyperphysics - Heat pump
- Non-domestic Building Services Compliance Guide For Scotland, 2015 Edition v1.1, published by the Scottish Government, Building Standards Division in April 2018.
Featured articles and news
Conservation in the age of the fourth (digital) industrial revolution.
Shaping the future of heritage
Embracing the evolution of economic thinking.
Ministers to unleash biggest building boom in half a century
50 major infrastructure projects, 5 billion for housing and 1.5 million homes.
RIBA Principal Designer Practice Note published
With key descriptions, best practice examples and FAQs, with supporting template resources.
Electrical businesses brace for project delays in 2025
BEB survey reveals over half worried about impact of delays.
Accelerating the remediation of buildings with unsafe cladding in England
The government publishes its Remediation Acceleration Plan.
Airtightness in raised access plenum floors
New testing guidance from BSRIA out now.
Picking up the hard hat on site or not
Common factors preventing workers using head protection and how to solve them.
Building trust with customers through endorsed trades
Commitment to quality demonstrated through government endorsed scheme.
New guidance for preparing structural submissions for Gateways 2 and 3
Published by the The Institution of Structural Engineers.
CIOB launches global mental health survey
To address the silent mental health crisis in construction.
New categories in sustainability, health and safety, and emerging talent.
Key takeaways from the BSRIA Briefing 2024
Not just waiting for Net Zero, but driving it.
The ISO answer to what is a digital twin
Talking about digital twins in a more consistent manner.
Top tips and risks to look out for.
New Code of Practice for fire and escape door hardware
Published by GAI and DHF.
Comments