Combined heat and power CHP
Combined heat and power (CHP), sometimes referred to as cogeneration, is a process in which the heat that is created as a by-product of power generation is captured and used rather than simply being wasted.
According to the Combined Heat and Power Association, “In today’s coal and gas fired power stations, up to two thirds of the overall energy consumed is lost in this way, often seen as a cloud of steam rising from cooling towers.”
Whilst there are a range of different forms of CHP, typically, a gas-powered turbine or reciprocating engine is used to produce electricity, and the heat recovered is used for local water or space heating, or to support an industrial process. Increasingly absorption cooling can use the heat recovered to produce cooling. Sometimes this process is referred to as trigeneration or combined cooling, heat and power (CCHP).
Alternative systems have heat generation as their primary function, and then use a steam turbine to generate electricity.
CHP as a process is not dependent on a specific fuel and so renewable fuels such as biomass feedstocks can be used.
Very broadly, CHP is appropriate in circumstances where there is a continuous local demand for heat and power, such as district heating schemes, hotels and leisure centres, industrial applications that require heat for manufacturing processes and so on. If excess electricity is generated, this can be exported back to the national grid.
The Department of Energy and Climate Change (DECC) lists the advantages of CHP as:
- An efficiency of over 80%, compared to 38% for a coal-fired power station.
- Up to 30% savings on energy bills.
- Up to 30% reduction in carbon emissions.
- Reduced transmission and distribution losses.
- Increased fuel supply security.
CHP can be a very significant investment and requires careful consideration. However, where they are certified as Good Quality (GQ) CHP, they are exempt from the Climate Change Levy for fuel inputs and electricity outputs. They may also qualify as Enhanced Capital Allowances (ECA) and be eligible for business rates exemption.
CHP plant can be manufactured as packaged units or can be custom designed and built. Increasingly, micro CHP units can be used to supply small-scale and domestic needs. In effect, these replace conventional boilers. Heat is the primary output of micro CHP, with the ratio of heat to electricity for domestic appliances typically around 6:1, generating up to 1kW of electricity. As with larger CHP plant, if excess electricity is generated, this can be exported back to the national grid. This may be eligible for Feed-in Tariffs in England and Wales and is considered an ‘eligible measure’ suitable for funding under the Green Deal.
[edit] Related articles on Designing Buildings
- Big growth in district heating markets - now and on the horizon.
- Biomass.
- Biomass CHP.
- BSRIA guide to heat interface units.
- Capital allowances.
- Can the Zeroth Energy System reduce the carbon footprint of HVAC services?
- Carbon capture and storage.
- Coefficient of Performance CoP.
- Community energy network.
- District energy.
- Fuel cell.
- Future of electricity in domestic buildings.
- Green Deal.
- Heat pump COP & EER and central plant SCOP in ambient loops.
- Heat Networks Investment Project HNIP.
- Liquefied petroleum gas (LPG).
- Low Carbon Energy Centre, London.
- Low carbon heating and cooling.
- Microgeneration.
- Micro-CHP.
- Micro-grid.
- On-site generation of heat and power.
[edit] External references
Featured articles and news
Heritage protection in England vs Australia.
Fire doors and the Fire Door Inspection Scheme.
Three-quarters of fire doors fail inspections
UN International Day for Biological Diversity, May 22.
The role of geoparks, biospheres and world heritage sites.
BSRIA conference 2022, June 23.
Just one month to go ! Find out more here.
Restoring Broadbent’s Bath House
A new gallery for the University of Huddersfield.
Corruption in the construction industry.
What will it take to stop it ?
To celebrate world bee day 2022 !
Just one month until the changes to part L come into effect.
Not forgetting part F and the new part overheating part O.
Heat Pump demand rises by one quarter.
As energy prices jump up in cost.
With people in the UK from Ukraine.
Industry leader Steve Murray takes on role.
An abundant and versatile building material.
How overheating complicates ending gas in the UK.
600,000 heat pump installations targeted per year by 2028.
Cost planning, control and related articles on DB.
Helping prevent those unwanted outcomes.
ICE debate Public transport - post pandemic.
How has transport changed due to Covid-19 ?
Cross-ventilation in buildings. Do you have it ?
Will you need it ? after June 15 and the new Part O ?
Share your knowledge with the industry.
Create an account and write the first of many articles.
The green jobs delivery group.
CIAT commentary after the first meeting.
Liverpool's world heritage site status
Who is to blame?
Research recommends focussing on portfolio success rather than project success.
Comments
To start a discussion about this article, click 'Add a comment' above and add your thoughts to this discussion page.