Radiant heating
Heat transfer mechanisms include:
All bodies which are hotter than 0°K emit thermal radiation. They also absorb thermal radiation emitted by their surroundings. The difference in the total amount of radiation emitted and absorbed by a body at any given moment may result in a net heat transfer which will produce a change in the temperature of that body.
Solar radiation may be considered to include the ultra violet, visible and near or short wave infra-red radiation. However, most 'terrestrial' radiation, emitted by bodies at normal temperatures on earth, is far or long wave infra-red radiation.
Radiant heat transmits in straight lines, only warming surfaces that are ‘visible’ to the source. However, these surfaces in turn re-radiate heat and warm air adjacent to them by convection. This allows heat from a radiant source to distribute through a space. Because it is directly heating, rather than heating the air (as in convective heating), it can be more efficient, particularly in large spaces, in spaces with poor insulation or in unenclosed or semi-enclosed spaces.
Radiant heating systems tend either to be low-temperature systems spread over large surface areas, or high temperature localised systems.
Radiant heating systems include:
- Underfloor heating systems.
- Wall heating systems (including tempering heating).
- Radiant ceiling panels.
- Integrated service modules.
- Gas fired heated tubes.
- Gas powered ceramic burners.
- Local electric heaters.
- Open fires.
Some radiant heating systems also heat by convection, for example hot water radiators, often found in domestic buildings, radiate heat directly to their surroundings, but also draw air through heated elements resulting in convective heating.
Water-based systems such as underfloor heating can be used to provide cooling as well as heating. Radiant heating systems can incorporate renewable energy sources such as solar thermal panels, solar photovoltaics, ground source heat pumps, air source heat pumps and so on. They may also be used in combination with thermal mass and night-time purging.
Compared to other forms of heating, radiant heating (depending on the system used) can be:
- More healthy, separating heating from ventilation, and so reducing problems associated with dust, pollen and other pollutants.
- More durable.
- More comfortable, giving a more even temperature distribution.
- More instantaneous.
- Space saving and unobtrusive.
- Quieter.
- Less expensive to run in certain situations. Low temperature systems in particular can run at a lower overall temperature than conventional heating systems whilst still achieving comfortable conditions.
- Easier to maintain.
- More directed.
Radiant heating also has less impact on air moisture content than other heating methods.
However, depending on the system adopted:
- High temperature electric radiant heaters can be expensive to run.
- It can impose restrictions on floor and wall coverings.
- It can be expensive to install.
- It can be less effective at cooling, and there can be condensation issues.
- There can be poor familiarity amongst designers and installers.
- It can be difficult to retrofit.
- It can be difficult to repair.
[edit] Related articles on Designing Buildings Wiki
- Air handling unit.
- Approved documents.
- Building services.
- Building services engineer.
- Building regulations.
- Co-heating test.
- Cold stress.
- Cooling.
- Corrosion in heating and cooling systems.
- Fan coil unit.
- Heating.
- Heat pump.
- Heat recovery.
- Heat stress.
- Heat transfer.
- HVAC.
- Radiation.
- Tempering heating.
- Thermal comfort.
- Underfloor heating.
- Visible light.
Featured articles and news
Do you take the lead in a circular construction economy?
Help us develop and expand this wiki as a resource for academia and industry alike.
Warm Homes Plan Workforce Taskforce
Risks of undermining UK’s energy transition due to lack of electrotechnical industry representation, says ECA.
Cost Optimal Domestic Electrification CODE
Modelling retrofits only on costs that directly impact the consumer: upfront cost of equipment, energy costs and maintenance costs.
The Warm Homes Plan details released
What's new and what is not, with industry reactions.
Could AI and VR cause an increase the value of heritage?
The Orange book: 2026 Amendment 4 to BS 7671:2018
ECA welcomes IET and BSI content sign off.
How neural technologies could transform the design future
Enhancing legacy parametric engines, offering novel ways to explore solutions and generate geometry.
Key AI related terms to be aware of
With explanations from the UK government and other bodies.
From QS to further education teacher
Applying real world skills with the next generation.
A guide on how children can use LEGO to mirror real engineering processes.
Data infrastructure for next-generation materials science
Research Data Express to automate data processing and create AI-ready datasets for materials research.
Wired for the Future with ECA; powering skills and progress
ECA South Wales Business Day 2025, a day to remember.
AI for the conservation professional
A level of sophistication previously reserved for science fiction.
Biomass harvested in cycles of less than ten years.
An interview with the new CIAT President
Usman Yaqub BSc (Hons) PCIAT MFPWS.
Cost benefit model report of building safety regime in Wales
Proposed policy option costs for design and construction stage of the new building safety regime in Wales.
Do you receive our free biweekly newsletter?
If not you can sign up to receive it in your mailbox here.






















