Damp proof membrane DPM
Damp in buildings can cause a number of serious problems, such as:
- Damp patches.
- Mould growth, which is a cause of respiratory allergies.
- Mildew, salts, staining and ‘tide marks’.
- Damage to surface finishes.
- Corrosion and decay of the building fabric.
- Slip hazards.
- Frost damage.
- Poor performance of insulation.
- Damage to equipment, or electrical failure.
The most common causes of persistent damp in buildings are:
- Surface condensation.
- Interstitial condensation (condensation within the fabric of a building's construction, either on the surfaces of components that make up the fabric, or sometimes within the components themselves).
- Penetrating damp.
- Rising damp.
Approved document C, Site preparation and resistance to contaminants and moisture, requires that (where appropriate) floors next to the ground should:
- Resist the passage of ground moisture to the upper surface of the floor.
- Not be damaged by moisture from the ground.
- Not be damaged by groundwater.
- Be designed and constructed so that their structural and thermal performance are not adversely affected by interstitial condensation.
- Should not promote surface condensation or mould growth.
A damp-proof membrane (DPM) is a membrane material applied to prevent moisture transmission. Typically, a DPM is a polyethylene sheet laid under a concrete slab to prevent the concrete from gaining moisture through capillary action.
The approved document suggests that a ground-supported floor will meet these requirements if the ground is covered with dense concrete laid on a hardcore bed and a DPM is provided. It suggests that the damp proof membrane may be above or below the concrete, and continuous with the damp proof courses (DPC) in walls, piers, and so on.
If the ground could contain water soluble sulphates, or there is any risk that sulphate or other deleterious matter could contaminate the hardcore, the membrane should be placed at the base of the concrete slab.
The approved document proposes that:
- A membrane below the concrete could be formed with a sheet of polyethylene, which should be at least 300μm thick (1200 gauge) with sealed joints and laid on a bed of material that will not damage the sheet.
- A membrane laid above the concrete may be either polyethylene sheet as described above (but without the bedding material) or three coats of cold applied bitumen solution or similar moisture and water vapour resisting material. It should be protected by either a screed or a floor finish, unless the membrane is pitchmastic or similar material which will also serve as a floor finish.
In order to resist degradation, insulation placed below the damp proof membrane should have low water absorption. If necessary the insulant should be resistant to contaminants in the ground.
A timber floor finish laid directly on concrete may be bedded in a material which may also serve as a damp-proof membrane. Timber fillets laid in the concrete as a fixing for a floor finish should be treated with an effective preservative unless they are above the damp-proof membrane.
[edit] Related articles on Designing Buildings
- Basement waterproofing.
- Bitumen.
- Blinding.
- Breather membrane.
- Capillary action.
- Cavity tray.
- Chemical injected DPC.
- Condensation.
- Damp.
- Damp proof course.
- Damp proofing.
- Defects in brickwork
- Defects in stonework.
- Does damp proofing work?
- Dew point.
- Humidity.
- Insulation.
- Interstitial condensation.
- Lintel.
- Penetrating damp.
- Polyethylene.
- Rising damp.
- Screed.
- Types of damp-proof courses.
- Vapour barrier.
Featured articles and news
Soil moisture content, construction and landscaping
The effects, of low and high rainfall on soil and buidlings.
Sustainability or sentimentality in the refurbishment sector.
Has the pendulum now swung too far ?
Negative impacts of political instability on projects
Expected by 64% of the respondents in nationwide survey.
BSRIA Market Intelligence Reports
World Building Automation and Control Systems (BACS) 2022
Statement of health and early intervention.
The importance of regular check-ups
And related links on DB.
Sustainable urban drainage systems SUDS
Rooflights, skylights, roof windows and Part L
Shedding some light on the new Building Regulations.
Interview with historic built environment surveyor.
Upgraded membership category now requires assessment.
The average kinetic energy of molecules
Temperature in buildings, explained on DB
Women and unequal pay in project management
Main barrier to entering the profession, new study reveals.
IHBC’s response to Parliamentary Committee
On Levelling-Up and Regeneration Bill.
Finalists for 2022 CIOB Awards revealed
Over 70 managers and organisations shortlisted for the 14 awards.
Types of building sensors on BD
From biometric to electrical current, chemical and more.
Government mandates detectors in rented homes
Changes are due to come into force on 1st October 2022.
80% of major government projects are rated red or amber
Heed advice and insight of this report IPA tells the government.
The end of the games but continued calls for action
From the Commonwealth Association of Architects.
Sustainable urban drainage systems SUDS