Active thermal mass in buildings
To help develop this article, click ‘Edit this article’ above.
The term ‘thermal mass’ describes the ability of a material to absorb, store and release heat energy. Thermal mass can be used to even out variations in internal and external conditions, absorbing heat as temperatures rise and releasing it as they fall. In building design, this can useful for evening out and delaying extremes in thermal conditions, stabilising the internal environment and so reducing or eliminating the demand for building services systems. It can be beneficial both during the summer and the winter.
Thermal mass is often considered to be a passive component of environmental design, with heat transfer between the internal air of the building interior and the thermal mass by ‘natural’ convection. However, it can be difficult to achieve close temperature control with passive thermal mass, and large quantities of thermal mass can be required.
The term ‘active thermal mass’ refers to the controlled absorption and release of heat energy from thermal mass. This active control can be used to maximise heat transfer between thermal mass and internal spaces and to better tune the absorption and release of heat to heating and cooling demands.
Active thermal mass systems are generally air-based or fluid-based systems.
- Air-based systems operate by drawing ventilation air past the thermal mass at low velocity, to maximise the heat transfer with the air. This can be achieved by using the hollow core in pre-cast concrete slabs as a ventilation duct, or using the void created by raised floors as a supply plenum. Air-based systems can be used to regulate the temperature of the thermal mass during occupied periods and for night-time purging.
- Fluid-based systems typically pump water through pipes embedded in the floor slab (similar to underfloor heating piping) to moderate the temperature of the thermal mass. Water has a greater cooling potential than air, however, in this case, ventilation must be provided separately. The water temperature is generally maintained at above 14°C to avoid condensation, and it can also be used to provide heating in the winter.
Building management systems can be used to control active thermal mass systems based on internal and external temperatures, the temperature of the mass, the occupancy pattern of the building and any heating, ventilation and air conditioning (HVAC) systems.
Designing active thermal mass systems can be complicated, particularly where there is integration with HVAC systems and requires dynamic thermal modelling techniques.
NB Earth to air heat exchangers and thermal labyrinths also exploit thermal mass to regulate internal conditions, but in this case, the mass in not within the building itself.
[edit] Related articles on Designing Buildings Wiki
Featured articles and news
Ministers to unleash biggest building boom in half a century
50 major infrastructure projects, 5 billion for housing and 1.5 million homes.
RIBA Principal Designer Practice Note published
With key descriptions, best practice examples and FAQs, with supporting template resources.
Electrical businesses brace for project delays in 2025
BEB survey reveals over half worried about impact of delays.
Accelerating the remediation of buildings with unsafe cladding in England
The government publishes its Remediation Acceleration Plan.
Airtightness in raised access plenum floors
New testing guidance from BSRIA out now.
Picking up the hard hat on site or not
Common factors preventing workers using head protection and how to solve them.
Building trust with customers through endorsed trades
Commitment to quality demonstrated through government endorsed scheme.
New guidance for preparing structural submissions for Gateways 2 and 3
Published by the The Institution of Structural Engineers.
CIOB launches global mental health survey
To address the silent mental health crisis in construction.
New categories in sustainability, health and safety, and emerging talent.
Key takeaways from the BSRIA Briefing 2024
Not just waiting for Net Zero, but driving it.
The ISO answer to what is a digital twin
Talking about digital twins in a more consistent manner.
Top tips and risks to look out for.
New Code of Practice for fire and escape door hardware
Published by GAI and DHF.
Retrofit of Buildings, a CIOB Technical Publication
Pertinent technical issues, retrofit measures and the roles involved.
New alliance will tackle skills shortage in greater Manchester
The pioneering Electrotechnical Training and Careers Alliance.