Active thermal mass in buildings
To help develop this article, click ‘Edit this article’ above.
The term ‘thermal mass’ describes the ability of a material to absorb, store and release heat energy. Thermal mass can be used to even out variations in internal and external conditions, absorbing heat as temperatures rise and releasing it as they fall. In building design, this can useful for evening out and delaying extremes in thermal conditions, stabilising the internal environment and so reducing or eliminating the demand for building services systems. It can be beneficial both during the summer and the winter.
Thermal mass is often considered to be a passive component of environmental design, with heat transfer between the internal air of the building interior and the thermal mass by ‘natural’ convection. However, it can be difficult to achieve close temperature control with passive thermal mass, and large quantities of thermal mass can be required.
The term ‘active thermal mass’ refers to the controlled absorption and release of heat energy from thermal mass. This active control can be used to maximise heat transfer between thermal mass and internal spaces and to better tune the absorption and release of heat to heating and cooling demands.
Active thermal mass systems are generally air-based or fluid-based systems.
- Air-based systems operate by drawing ventilation air past the thermal mass at low velocity, to maximise the heat transfer with the air. This can be achieved by using the hollow core in pre-cast concrete slabs as a ventilation duct, or using the void created by raised floors as a supply plenum. Air-based systems can be used to regulate the temperature of the thermal mass during occupied periods and for night-time purging.
- Fluid-based systems typically pump water through pipes embedded in the floor slab (similar to underfloor heating piping) to moderate the temperature of the thermal mass. Water has a greater cooling potential than air, however, in this case, ventilation must be provided separately. The water temperature is generally maintained at above 14°C to avoid condensation, and it can also be used to provide heating in the winter.
Building management systems can be used to control active thermal mass systems based on internal and external temperatures, the temperature of the mass, the occupancy pattern of the building and any heating, ventilation and air conditioning (HVAC) systems.
Designing active thermal mass systems can be complicated, particularly where there is integration with HVAC systems and requires dynamic thermal modelling techniques.
NB Earth to air heat exchangers and thermal labyrinths also exploit thermal mass to regulate internal conditions, but in this case, the mass in not within the building itself.
[edit] Related articles on Designing Buildings Wiki
Featured articles and news
Reform of the fire engineering profession
Fire Engineers Advisory Panel: Authoritative Statement, reactions and next steps.
Restoration and renewal of the Palace of Westminster
A complex project of cultural significance from full decant to EMI, opportunities and a potential a way forward.
Apprenticeships and the responsibility we share
Perspectives from the CIOB President as National Apprentice Week comes to a close.
The first line of defence against rain, wind and snow.
Building Safety recap January, 2026
What we missed at the end of last year, and at the start of this...
National Apprenticeship Week 2026, 9-15 Feb
Shining a light on the positive impacts for businesses, their apprentices and the wider economy alike.
Applications and benefits of acoustic flooring
From commercial to retail.
From solid to sprung and ribbed to raised.
Strengthening industry collaboration in Hong Kong
Hong Kong Institute of Construction and The Chartered Institute of Building sign Memorandum of Understanding.
A detailed description from the experts at Cornish Lime.
IHBC planning for growth with corporate plan development
Grow with the Institute by volunteering and CP25 consultation.
Connecting ambition and action for designers and specifiers.
Electrical skills gap deepens as apprenticeship starts fall despite surging demand says ECA.
Built environment bodies deepen joint action on EDI
B.E.Inclusive initiative agree next phase of joint equity, diversity and inclusion (EDI) action plan.
Recognising culture as key to sustainable economic growth
Creative UK Provocation paper: Culture as Growth Infrastructure.
Futurebuild and UK Construction Week London Unite
Creating the UK’s Built Environment Super Event and over 25 other key partnerships.
Welsh and Scottish 2026 elections
Manifestos for the built environment for upcoming same May day elections.
Advancing BIM education with a competency framework
“We don’t need people who can just draw in 3D. We need people who can think in data.”























