Solar irradiance
[edit] Introduction
Solar Irradiance is the power being emitted by a nuclear fusion reaction when protons of hydrogen atoms create helium atoms by violently colliding within the core of the sun. Solar irradiance is measured in watts per square metre (W/m2).
The process occurring in the sun is known as a PP (proton-proton) chain reaction or the CNO cycle as it relies on carbon, nitrogen, and oxygen. The sun fuses about 620 million metric tons of hydrogen every second. This releases tremendous amounts of energy, heat, and light that flow from the sun as electromagnetic radiation (EMR).
Low frequency infrared waves and the colour spectrum of light are emitted as well as high-frequency waves of Gamma rays, X-rays, and ultraviolet radiation or UV rays, of which the most harmful are absorbed into the atmosphere whilst others fall on the surface of the Earth and can cause sunburn.
This power at any given point in time is measured relative to a unit area of the surface it is hitting, normally Watts per metre square (Wm2). Total solar irradiance is a measure of all possible wavelengths of solar power that enter the earths atmosphere at its upper edges.
For more information see: Radiation.
[edit] Solar irradiance and carbon dioxide
Whilst 30% of the solar energy coming from the sun is reflected back into space, the rest is absorbed by the atmosphere or warms the surface of the earth. Some infrared waves are radiated back into the atmosphere. These waves are intercepted by greenhouse gases, such as water vapour and carbon dioxide as they rise through the atmosphere. About half of that energy goes out into space, and about half of it returns to Earth as heat, contributing to the 'greenhouse effect'.
For more information see: Greenhouse effect.
[edit] Solar irradiance and energy
Solar irradiance to cell efficiency, refers to the percentage of solar irradiance that can be turned into useful electrical energy. A standard photovoltaic panel can normally achieve up to 20% (sometimes up to 23%). However in May of 2022 the Fraunhofer Institute for Solar Energy Systems developed the world's most efficient solar cell with 47.6 percent efficiency, under direct sunlight conditions.
Whilst efficiency at any given point is important, energy is used over longer periods and this is dependent on the amount of energy on a surface over time as well as how well a solar PV system can convert that to useful electricity for say a year, from both direct an indirect sunlight on cloudy days for instance.
[edit] Global Horizontal Irradiance (GHI)
Global Horizontal Irradiance is a measure of the total, direct and indirect irradiance of the sun on a flat surface of the earth measure, relative to the solar zenith angle. Also called solar exposure or insolation it is given as a measure of SI units in Watts per metre square (W/m2). It can be measured using a pyranometer.
[edit] Direct Normal Irradiance (DNI)
Direct Normal Irradiance is the amount of direct power hitting a surface, such as the Earth when it is perpendicular to the sun. It excludes the losses likely to occur within the earths atmosphere by absorption and the scattering of radiation via moisture, clouds, ozone etc. It can be measured using a pyrheliometers.
[edit] Direct Solar Irradiance (DSI)
Direct Irradiance (DSI) is the irradiance that hits the outmost edge of the earths atmosphere, excluding any diffused by elements in the atmosphere.
[edit] Diffuse Horizontal Irradiance (DHI)
Diffuse Horizontal Irradiance is a measure of radiation from all areas reflected within in the atmosphere and excludes radiation coming directly from the sun.
[edit] Global Tilted Irradiance (GTI)
Global Tilted Irradiance (GTI) Is the same as Global Horizontal Irradiance and measures the total, direct and indirect irradiance of the sun but on a surface that is at a specified angle, tilt or azimuth. It is often relevant for solar devices that track and move with the sun.
[edit] External references
- https://education.nationalgeographic.org/resource/solar-energy
- https://www.ise.fraunhofer.de/en/press-media/press-releases/2022/fraunhofer-ise-develops-the-worlds-most-efficient-solar-cell-with-47-comma-6-percent-efficiency.html
[edit] Related articles on Designing Buildings
- Albedo.
- Approved Document O.
- Better prediction of overheating in new homes.
- Brise soleil.
- Cool roofs.
- Greenhouse effect.
- Large scale solar thermal energy.
- Low-e glass.
- Shading coefficient.
- Solar heat gain coefficient.
- Solar photovoltaics.
- Solar radiation.
- Solar thermal panels.
- Thermal optical properties.
- Urban heat island effect.
- Visible light.
Featured articles and news
National Apprenticeship Week 2026, 9-15 Feb
Shining a light on the positive impacts for businesses their apprentices and the wider economy alike.
Applications and benefits of acoustic flooring
From commercial to retail.
From solid to sprung and ribbed to raised.
Strengthening industry collaboration in Hong Kong
Hong Kong Institute of Construction and The Chartered Institute of Building sign Memorandum of Understanding.
A detailed description fron the experts at Cornish Lime.
IHBC planning for growth with corporate plan development
Grow with the Institute by volunteering and CP25 consultation.
Connecting ambition and action for designers and specifiers.
Electrical skills gap deepens as apprenticeship starts fall despite surging demand says ECA.
Built environment bodies deepen joint action on EDI
B.E.Inclusive initiative agree next phase of joint equity, diversity and inclusion (EDI) action plan.
Recognising culture as key to sustainable economic growth
Creative UK Provocation paper: Culture as Growth Infrastructure.
Futurebuild and UK Construction Week London Unite
Creating the UK’s Built Environment Super Event and over 25 other key partnerships.
Welsh and Scottish 2026 elections
Manifestos for the built environment for upcoming same May day elections.
Advancing BIM education with a competency framework
“We don’t need people who can just draw in 3D. We need people who can think in data.”
Guidance notes to prepare for April ERA changes
From the Electrical Contractors' Association Employee Relations team.
Significant changes to be seen from the new ERA in 2026 and 2027, starting on 6 April 2026.
First aid in the modern workplace with St John Ambulance.
Solar panels, pitched roofs and risk of fire spread
60% increase in solar panel fires prompts tests and installation warnings.
Modernising heat networks with Heat interface unit
Why HIUs hold the key to efficiency upgrades.
























