Assessing bridges
Contents |
[edit] Introduction
Many parts of the world continue to provide opportunities for major new bridge construction. These include the massive investment in infrastructure in China and the Far East; the urban metro schemes in India and the Middle East; and the high-speed rail lines in Europe and the USA.
However, many countries now have extensive stocks of mature bridge assets. A typical example is London Underground, which has a stock of approximately 8,000 bridges and other assets, of which nearly half were constructed before 1900.
Assessment is a key tool for the management of existing bridges. Assessments may be undertaken to check that bridges are safe under the loads they are already experiencing. In addition, increasing traffic capacities and loading often require the evaluation of the carrying capacity of existing structures. Changes to structures, such as modifications or external damage or deterioration, may also need to be assessed.
Bridge assessment, although a challenging subject, can also be a rich field that offers opportunities for research, innovation and the development of technical expertise. The rewards can also be significant: analytical approaches are generally less costly than structural strengthening, so there can be many benefits in progressing sophisticated investigation and analysis methods to justify the strength of structures.
[edit] Sound solution
In situ tests show that sometimes bridges have a reserve strength that is not accounted for in design codes of standard assessment methods, since the codes may conservatively neglect contributory mechanisms. Full-scale load testing can demonstrate these reserves of strength. However, proof load testing up to the design load may have risks of inducing cracking or damage in the structure if it is not properly performed and controlled, owing to the high level of load in the bridge.
Acoustic emission has been identified as a useful technique to stop the load increase before any damage can be inflicted on the bridge. In 169 BE2, of the ICE's Bridge Engineering journal, Olaszek et al. (2016) present tests on a three-span bridge at Barcza, Poland, and shows that monitoring with acoustic emission sensors made it possible to evaluate the cracking limits of the concrete members and stop the load increase prior to the onset of plastic behaviour.
[edit] Data discussions
Certainly structural health monitoring can produce valuable data-sets that can aid key decisions on current performance, margins of safety, actual loading, stress history, extent of deterioration and residual life. However, the collection of data is of little value unless it can be used to inform and influence decision-making.
Facilitating formal discussions between key stakeholders before any deployment will ensure that scarce resources are not wasted in the pursuit of data as opposed to information. Vardanega et al. (2016) propose an approach is based around a questionnaire to be completed in partnership between the asset manager, structural engineer and monitoring engineer.
The approach can be used to determine if there is a case for specifying monitoring on a project and assess the potential value of any information that may be obtained. It has been trialled against five historical monitoring case studies.
[edit] Numerical modelling
Non-linear three-dimensional finite-element modelling also plays a major role in bridge assessment. For example, it can be used to consider progressive damage in masonry arch bridges. This allows for the investigation of damage and crack propagation at service level loads, in contrast to traditional methods that only consider the ultimate capacity state of masonry arch bridges (Gibbons and Fanning, 2016).
It can also be used to demonstrate the adequacy of web stiffeners and longitudinal stiffeners in box girder bridges. At Tame Valley Viaduct in the UK, post-buckling capacity and the Eurocodes effective-area approach were used to calculate the resistance of plated structures (West, 2016).
On this project the desire to optimise the strengthening works led to the creation of a structural information model and bespoke software tool to automate the assessment process rather than conservatively selecting critical panels. The project clearly demonstrates how investment at assessment stage can leverage major savings in construction by significantly reducing the quantity of strengthening required.
This article was published by ICE on 1 July 2016. It was written by Simon Fullalove. You can see the original article here.
--The Institution of Civil Engineers
[edit] Related articles on Designing Buildings Wiki
Featured articles and news
A change to adoptive architecture
Effects of global weather warming on architectural detailing, material choice and human interaction.
How big is the problem and what can we do to mitigate the effects?
Overheating guidance and tools for building designers
A number of cool guides to help with the heat.
The UK's Modern Industrial Strategy: A 10 year plan
Previous consultation criticism, current key elements and general support with some persisting reservations.
Building Safety Regulator reforms
New roles, new staff and a new fast track service pave the way for a single construction regulator.
Architectural Technologist CPDs and Communications
CIAT CPD… and how you can do it!
Cooling centres and cool spaces
Managing extreme heat in cities by directing the public to places for heat stress relief and water sources.
Winter gardens: A brief history and warm variations
Extending the season with glass in different forms and terms.
Restoring Great Yarmouth's Winter Gardens
Transforming one of the least sustainable constructions imaginable.
Construction Skills Mission Board launch sector drive
Newly formed government and industry collaboration set strategy for recruiting an additional 100,000 construction workers a year.
New Architects Code comes into effect in September 2025
ARB Architects Code of Conduct and Practice available with ongoing consultation regarding guidance.
Welsh Skills Body (Medr) launches ambitious plan
The new skills body brings together funding and regulation of tertiary education and research for the devolved nation.
Paul Gandy FCIOB announced as next CIOB President
Former Tilbury Douglas CEO takes helm.
UK Infrastructure: A 10 Year Strategy. In brief with reactions
With the National Infrastructure and Service Transformation Authority (NISTA).
Ebenezer Howard: inventor of the garden city. Book review.
Airtightness Topic Guide BSRIA TG 27/2025
Explaining the basics of airtightness, what it is, why it's important, when it's required and how it's carried out.