Optimal arch bridge
Published in June 2016, a professor from the University of Warwick has completed a research paper that claims to present an optimised design for an arch bridge with unlimited bearing capacity.
The claim being made for Emeritus Prof. Wanda Lewis' findings, is that it could make possible a new generation of indestructible bridges, something that has been debated for centuries.
The catenary form of bridge arch – resembling the line of an upside-down chain line – was demonstrated to the Royal Society by Robert Hook in the 17th century. The inverted parabola is the only other form proposed by classical theory. Both shapes can take only a specific type of load without developing complex stresses which are points of weakness.
Prof. Lewis, of Warwick's School of Engineering, has used a process of design called 'form-finding' which is inspired by natural processes. This is an attempt at filling in the gaps in the classical theory, offering a new mathematical solution to the optimal arch subjected to general loading. The design of rigid structures that follow a strong natural form are enabled by the process of form-finding. A force of pure compression or tension sustain these structures with no bending stresses, which on other structures are the main points of weakness.
The potential for the breakthrough could be bridge and structure designs that are capable of taking any combination of permanent loading without generating complex stresses, an engineering problem that has hitherto yielded no solution. Such structures could be more durable and require less maintenance.
A fellow of ICE, Prof. Lewis has spent many years studying forms and shapes as they occur in the natural world. In natural processes such as the outlines of a tree or leaf, or a shell's curve, they can be seen to withstand applied forces by developing simple stress patterns. She has developed mathematical models that implement design principles and produce similarly simple stress patterns in structures.
Her paper explains how a piece of fabric is suspended, and allowed to relax into its natural, gravitational, minimum-energy shape. That shape is then frozen into a rigid object and inverted. By simulating the gravitational forces applied to the structure by finding coordinates through computation, a shape (natural form) is produced that can withstand the load with ease.
You can read the paper at the Royal Society.
[edit] Find out more
[edit] Related articles on Designing Buildings Wiki
Featured articles and news
Key points for construction at a glance with industry reactions.
Functionality, visibility and sustainability
The simpler approach to specification.
Architects, architecture, buildings, and inspiration in film
The close ties between makers and the movies, with our long list of suggested viewing.
SELECT three-point plan for action issued to MSPs
Call for Scottish regulation, green skills and recognition of electrotechnical industry as part of a manifesto for Scottish Parliamentary elections.
UCEM becomes the University of the Built Environment
Major milestone in its 106-year history, follows recent merger with London School of Architecture (LSE).
Professional practical experience for Architects in training
The long process to transform the nature of education and professional practical experience in the Architecture profession following recent reports.
A people-first approach to retrofit
Moving away from the destructive paradigm of fabric-first.
International Electrician Day, 10 June 2025
Celebrating the role of electrical engineers from André-Marie Amperè, today and for the future.
New guide for clients launched at Houses of Parliament
'There has never been a more important time for clients to step up and ...ask the right questions'
The impact of recycled slate tiles
Innovation across the decades.
EPC changes for existing buildings
Changes and their context as the new RdSAP methodology comes into use from 15 June.
Skills England publishes Sector skills needs assessments
Priority areas relating to the built environment highlighted and described in brief.
BSRIA HVAC Market Watch - May 2025 Edition
Heat Pump Market Outlook: Policy, Performance & Refrigerant Trends for 2025–2028.
Committing to EDI in construction with CIOB
Built Environment professional bodies deepen commitment to EDI with two new signatories: CIAT and CICES.
Government Grenfell progress report at a glance
Line by line recomendation overview, with links to more details.
An engaging and lively review of his professional life.
Sustainable heating for listed buildings
A problem that needs to be approached intelligently.
50th Golden anniversary ECA Edmundson apprentice award
Deadline for entries has been extended to Friday 27 June, so don't miss out!
CIAT at the London Festival of Architecture
Designing for Everyone: Breaking Barriers in Inclusive Architecture.
Mixed reactions to apprenticeship and skills reform 2025
A 'welcome shift' for some and a 'backwards step' for others.