Optimal arch bridge
Published in June 2016, a professor from the University of Warwick has completed a research paper that claims to present an optimised design for an arch bridge with unlimited bearing capacity.
The claim being made for Emeritus Prof. Wanda Lewis' findings, is that it could make possible a new generation of indestructible bridges, something that has been debated for centuries.
The catenary form of bridge arch – resembling the line of an upside-down chain line – was demonstrated to the Royal Society by Robert Hook in the 17th century. The inverted parabola is the only other form proposed by classical theory. Both shapes can take only a specific type of load without developing complex stresses which are points of weakness.
Prof. Lewis, of Warwick's School of Engineering, has used a process of design called 'form-finding' which is inspired by natural processes. This is an attempt at filling in the gaps in the classical theory, offering a new mathematical solution to the optimal arch subjected to general loading. The design of rigid structures that follow a strong natural form are enabled by the process of form-finding. A force of pure compression or tension sustain these structures with no bending stresses, which on other structures are the main points of weakness.
The potential for the breakthrough could be bridge and structure designs that are capable of taking any combination of permanent loading without generating complex stresses, an engineering problem that has hitherto yielded no solution. Such structures could be more durable and require less maintenance.
A fellow of ICE, Prof. Lewis has spent many years studying forms and shapes as they occur in the natural world. In natural processes such as the outlines of a tree or leaf, or a shell's curve, they can be seen to withstand applied forces by developing simple stress patterns. She has developed mathematical models that implement design principles and produce similarly simple stress patterns in structures.
Her paper explains how a piece of fabric is suspended, and allowed to relax into its natural, gravitational, minimum-energy shape. That shape is then frozen into a rigid object and inverted. By simulating the gravitational forces applied to the structure by finding coordinates through computation, a shape (natural form) is produced that can withstand the load with ease.
You can read the paper at the Royal Society.
[edit] Find out more
[edit] Related articles on Designing Buildings Wiki
Featured articles and news
A case study and a warning to would-be developers
Creating four dwellings for people to come home to... after half a century of doing this job, why, oh why, is it so difficult?
Reform of the fire engineering profession
Fire Engineers Advisory Panel: Authoritative Statement, reactions and next steps.
Restoration and renewal of the Palace of Westminster
A complex project of cultural significance from full decant to EMI, opportunities and a potential a way forward.
Apprenticeships and the responsibility we share
Perspectives from the CIOB President as National Apprentice Week comes to a close.
The first line of defence against rain, wind and snow.
Building Safety recap January, 2026
What we missed at the end of last year, and at the start of this...
National Apprenticeship Week 2026, 9-15 Feb
Shining a light on the positive impacts for businesses, their apprentices and the wider economy alike.
Applications and benefits of acoustic flooring
From commercial to retail.
From solid to sprung and ribbed to raised.
Strengthening industry collaboration in Hong Kong
Hong Kong Institute of Construction and The Chartered Institute of Building sign Memorandum of Understanding.
A detailed description from the experts at Cornish Lime.
IHBC planning for growth with corporate plan development
Grow with the Institute by volunteering and CP25 consultation.
Connecting ambition and action for designers and specifiers.
Electrical skills gap deepens as apprenticeship starts fall despite surging demand says ECA.
Built environment bodies deepen joint action on EDI
B.E.Inclusive initiative agree next phase of joint equity, diversity and inclusion (EDI) action plan.
Recognising culture as key to sustainable economic growth
Creative UK Provocation paper: Culture as Growth Infrastructure.
Futurebuild and UK Construction Week London Unite
Creating the UK’s Built Environment Super Event and over 25 other key partnerships.
Welsh and Scottish 2026 elections
Manifestos for the built environment for upcoming same May day elections.
Advancing BIM education with a competency framework
“We don’t need people who can just draw in 3D. We need people who can think in data.”
























